Short-Term Wind Speed Prediction Based on Principal Component Analysis and LSTM
Abstract
:1. Introduction
- A wind speed prediction algorithm considering meteorological features based on PCA and LSTM networks is presented. DE as a hyperparameter selection method is also included in the proposed method.
- The PCA preprocessing method can effectively reduce the dimensions and retain the features in the data, which lays an important foundation for more accurate prediction with improved computational efficiency.
- The proposed method is validated on three different cases considering real-world data, and experimental results show that the proposed method outperforms other popular forecasting methods.
2. Methodology
2.1. PCA Algorithm
- (1)
- Calculate the covariance matrix of by Equation (2):
- (2)
- Calculate the eigenvalues and eigenvectors of by Equation (3):
- (3)
- Arrange the eigenvalues from large to small and then calculate the contribution rate of each feature and cumulative contribution rate of all features by Equations (4) and (5) as follows:
- (4)
- According to (3), select I (I ≤ M) components which contain the most information of from M components. The eigenvectors corresponding to the selected components constitute the transformation matrix U. The reduced dimension matrix Z is obtained by multiplying the original data matrix and the transformation matrix U as described in Equation (6)
2.2. LSTM and Hyperparameter Selection
2.2.1. LSTM
- (1)
- Calculate the inputs for three gate units and the candidate cell by Equations (7)–(10):
- (2)
- Calculate the three gate units by Equations (11)–(15):
- (3)
- Calculate the output by Equation (18):
2.2.2. Selection of Hyperparameters
- (1)
- Initialization: Initialize the following parameters: length of individual D, number of iterations G, population size NP, crossover rate, and scaling or mutation factor. The population is randomly generated by Equation (20):
- (2)
- Mutation: Mutation operator is used to generate the mutation vector (Hi) for the individual of the population using Equation (21).
- (3)
- Crossover: Crossover operation is to randomly select individuals using Equation (22)
- (4)
- Selection: In the selection operator as shown in Equation (23), for minimization problems, if the fitness value of the trial vector is less than or equal to the fitness value of the target vector , the trial vector will replace the target vector and enter the population. Otherwise, the target vector is still retained.
2.3. Proposed Prediction Framework
2.4. Evaluation Metric of Prediction
3. Case Study
3.1. Data Description
3.2. Experimental Design and Parameter Settings
3.3. Prediction Result Analysis
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dyrholm, M.; Rebollo, A.; Backwell, B.; Aufderheide, B.; Ohlenforst, K. Global Wind Report 2018; Global Wind Energy Council (GWEC): Brussels, Belgium, 2019. [Google Scholar]
- Yang, X.Y.; Zhang, Y.F.; Yang, Y.W.; Lv, W. Deterministic and Probabilistic Wind Power Forecasting Based on Bi-Level Convolutional Neural Network and Particle Swarm Optimization. Appl. Sci. 2019, 9, 1794. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.H.; Liu, Y.W.; Wang, J.Z.; Wang, C. Research on Combined Model Based on multi-objective optimization and application in wind speed forecast. Appl. Sci. 2019, 9, 423. [Google Scholar] [CrossRef] [Green Version]
- Jaesung, J.; Robert, P.B. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 2014, 31, 762–777. [Google Scholar]
- Wang, Q.; Wu, H.; Florita, A.; Martinez, C.B.; Hodge, B.M. The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales. Appl. Energy 2016, 184, 696–713. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.Y.; Zheng, Q.; Nabney, L.T.; Meng, X.F. Wind power forecasting using Gaussian Processes and Numerical weather prediction. IEEE Trans. Power Syst. 2014, 29, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, P.; Baczyński, D.; Kopyt, M.; Szafranek, K.; Helt, P.; Gulczyński, T. Analysis of forecasted meteorological data (NWP) for efficient spatial forecasting of wind power generation. Electr. Power Syst. Res. 2019, 175, 105891. [Google Scholar] [CrossRef]
- Marta, P.; Pilar, P.; José, R.P. Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting. Appl. Energy 2013, 108, 349–362. [Google Scholar]
- Erdem, E.; Shi, J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl. Energy 2011, 88, 1405–1414. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Shi, J.; Li, G. Fine tuning support vector machines for short-term wind speed forecasting. Energ. Convers. Manag. 2011, 52, 1990–1998. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.K.; Zhao, X.; Liu, T.H.; Zhang, K.J. A Gaussian process regression based hybrid approach for short-term wind speed prediction. Energy Convers. Manag. 2016, 126, 1084–1092. [Google Scholar] [CrossRef]
- Xia, J.; Wu, W.Q.; Huang, B.L.; Li, W.P. Application of a new information priority accumulated grey model with time power to predict short-term wind turbine capacity. J. Clean. Prod. 2020, 244, 118573. [Google Scholar] [CrossRef] [Green Version]
- Cassiola, F.; Burlando, M. Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output. Appl. Energy 2012, 99, 154–166. [Google Scholar] [CrossRef]
- Singh, S.N.; Mohapatra, A. Repeated wavelet transform based ARIMA model for very short-term wind speed. Renew. Energy 2019, 136, 758–768. [Google Scholar]
- Rjoub, G.; Bentahar, J.; Wahab, O.A.; Bataineh, A. Deep Smart Scheduling: A Deep Learning Approach for Automated Big Data Scheduling Over the Cloud. In Proceedings of the 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud), Istanbul, Turkey, 26–28 August 2019; pp. 189–196. [Google Scholar]
- Wahab, O.A.; Bentahar, J.; Otrok, H.; Mourad, A. Resource-Aware Detection and Defense System Against Multi-Type Attacks in the Cloud: Repeated Bayesian Stackelberg Game. IEEE Trans. Dependable Secur. Comput. 2019, 2907946. [Google Scholar] [CrossRef]
- Wahab, O.A.; Cohen, R.; Bentahar, J.; Otrok, H.; Mourad, A.; Rjoub, G. An endorsement-based trust bootstrapping approach for newcomer cloud services. Inf. Sci. 2020, 527, 159–175. [Google Scholar] [CrossRef]
- Sarker, I.H.; Kayes, A.S.M.; Watters, P. Effectiveness Analysis of Machine Learning Classification Models for Predicting Personalized Context-Aware Smartphone Usage. J. Big Data 2019, 6, 57. [Google Scholar] [CrossRef]
- Zameer, A.; Khan, A.; Javed, S.G. Machine Learning based short term wind power prediction using a hybrid learning model. Comput. Electr. Eng. 2015, 45, 122–133. [Google Scholar]
- Heinermann, J.; Kramer, O. Machine learning ensembles for wind power prediction. Renew. Energy 2016, 89, 671–679. [Google Scholar] [CrossRef]
- Treiber, N.A.; Heinermann, J.; Kramer, O. Wind power prediction with Machine Learning. Comput. Sustain. 2016, 645, 13–29. [Google Scholar]
- Hu, Y.L.; Chen, L. A nonlinear hybrid wind speed forecasting model using LSTM network, hysteretic ELM and Differential Evolution algorithm. Energy Convers. Manag. 2018, 173, 123–142. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Chen, B.; Zhao, Y.; Pan, G. Wind Speed Prediction of IPSO-BP Neural Network Based on Lorenz Disturbance. IEEE Access 2018, 6, 53168–53179. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.W.; Li, Y.F.; Duan, Z.; Xu, Y.N. Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression. Renew. Energy 2019, 143, 842–854. [Google Scholar] [CrossRef]
- Ma, T.; Wang, C.; Wang, J.Z.; Cheng, J.J.; Chen, X.Y. Particle-swarm optimization of ensemble neural network with negative correlation learning for forecasting short-term wind speed of wind farms in western China. Inf. Sci. 2019, 505, 157–182. [Google Scholar] [CrossRef]
- Pei, S.Q.; Qin, H.; Zhang, Z.D.; Yao, L.Q.; Wang, Y.Q.; Wang, C.; Liu, Y.Q.; Jiang, Z.Q.; Zhou, J.Z.; Yi, T.L. Wind speed prediction method based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory network. Energy Convers. Manag. 2019, 196, 779–792. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Ye, L.; Qin, H.; Liu, Y.Q.; Wang, C.; Yu, X.; Yin, X.L.; Li, J. Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression. Appl. Energy 2019, 247, 270–284. [Google Scholar] [CrossRef]
- Khosravi, A.; Machado, L.; Nunes, R.O. Time-series prediction of wind speed using machine learning algorithms: A case study Osorio wind farm, Brazil. Appl. Energy 2018, 224, 550–566. [Google Scholar] [CrossRef]
- Ronay, A.; Olga, F.; Enrico, Z. Two machine learning approaches for short-term wind speed time-series prediction. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 1734–1747. [Google Scholar]
- Hong, Y.Y.; Paulo, P.; Rioflorido, C.L. A hybrid deep learning-based neural network for 24-h ahead wind power forecasting. Appl. Energy 2019, 250, 530–539. [Google Scholar] [CrossRef]
- Kumar, P.S.; Lopez, D. Feature Selection used for Wind Speed Forecasting with Data Driven Approaches. Res. J. Appl. Sci. Eng. Technol. 2015, 8, 921–926. [Google Scholar]
- Fan, S.; Liao, J.R.; Yokoyama, R.; Chen, L.N.; Lee, W.J. Forecasting the Wind Generation Using a Two-Stage Network Based on Meteorological Information. IEEE. Trans. Energy Conver. 2009, 24, 474–482. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Qin, H.; Liu, Y.Q.; Wang, Y.Q.; Yao, L.Q.; Li, Q.Q.; Li, J.; Pei, S.Q. Long Short-Term Memory Network based on Neighborhood Gates for processing complex causality in wind speed prediction. Energy Convers. Manag. 2019, 192, 37–51. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Zhang, C.H.; Zhao, Y.; Gao, S. Wind speed prediction with RBF neural network based on PCA and ICA. J. Electr. Eng. 2018, 69, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.G.; Chen, B.; Pan, G.F.; Zhao, Y. A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting. Energy Convers. Manag. 2019, 195, 180–197. [Google Scholar] [CrossRef]
- Sarker, I.H.; Abushark, Y.B.; Khan, A.I. ContextPCA: Predicting Context-Aware Smartphone Apps Usage based on Machine Learning Techniques. Symmetry 2020, 12, 499. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Mittal, M. KNN and PCA classifier with Autoregressive modelling during different ECG signal interpretation. Procedia. Comput. 2017, 125, 18–24. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural. Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, L.; Hou, C.; Han, H.; Liu, Z.J.; Sun, Y.; Zheng, M.H. Wind Power Short-Term Prediction Based on LSTM and Discrete Wavelet Transform. Appl. Sci. 2019, 9, 1108. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zeng, Y.; Chen, T. Back propagation neural network with adaptive differential evolution algorithm for time series forecasting. Expert Syst. Appl. 2015, 42, 855–863. [Google Scholar] [CrossRef]
- Cui, L.Z.; Huang, Q.L.; Li, G.H.; Yang, S.; Ming, Z.; Wen, Z.K.; Lu, N.; Lu, J. Differential Evolution Algorithm with Tracking Mechanism and Backtracking Mechanism. IEEE Access 2018, 6, 44252–44267. [Google Scholar] [CrossRef]
Feature Number | Factor | Unit | Min | Max | Mean | Std |
---|---|---|---|---|---|---|
1 | Air pressure | hpa | 902 | 919.5 | 909.96 | 3.42 |
2 | Sea level pressure | hpa | 993.9 | 1017.4 | 1004.5 | 4.37 |
3 | Air temperature | °C | 10.2 | 35.3 | 22.64 | 5.09 |
4 | Apparent temperature | °C | 9.16 | 32.32 | 21.74 | 4.85 |
5 | Extreme wind speed | m/s | 1.2 | 15.65 | 6.48 | 3.76 |
6 | Wind level | \ | 1 | 6 | 2.62 | 1.27 |
7 | Relative humidity | % | 10 | 91 | 40.88 | 16.99 |
8 | Minimum relative humidity | % | 8 | 90 | 38.3 | 16.28 |
9 | Vapor pressure | hpa | 4.3 | 18.4 | 10.36 | 2.41 |
10 | Precipitation | mm | 0 | 0.7 | 0.00 | 0.04 |
11 | Horizontal visibility | m | 7500 | 35,000 | 34,462 | 2652.5 |
Principal Component | Eigenvalues | Contribution Rate | Cumulative Contribution Rate |
---|---|---|---|
First | 0.2189 | 0.5238 | 0.5238 |
Second | 0.0843 | 0.2017 | 0.7255 |
Third | 0.0661 | 0.1582 | 0.8837 |
Fourth | 0.0203 | 0.0485 | 0.9322 |
Fifth | 0.0138 | 0.0331 | 0.9653 |
Sixth | 0.0091 | 0.0217 | 0.9870 |
Seventh | 0.0027 | 0.0065 | 0.9935 |
Eighth | 0.0021 | 0.0051 | 1.0 |
Ninth | 0.0003 | 0.0007 | 1.0 |
Tenth | 0.0003 | 0.0006 | 1.0 |
Eleventh | 0 | 0 | 1.0 |
Model | Parameters | Value | Reason |
---|---|---|---|
LSTM Feature-LSTM Proposed Model | Learning rate | 0.0047 | Obtained by DE |
Hidden unit | 68 | Obtained by DE | |
Batch size | 29 | Obtained by DE | |
Epochs of training | 1000 | Converged | |
BPNN Feature-BPNN PCA-BPNN | Hidden unit | 10 | Common value |
Epochs of training | 1000 | Converged | |
SVR Feature-SVR PCA-SVR | Kernel function | Radial Basis Function | A competitive kernel function |
Parameter in Radial Basis Function | 1 | Common value | |
GPR Feature-GPR PCA-GPR | Kernel Function | Gaussian Function | A competitive kernel function |
Parameter in Gaussian Function | 2 | Common value | |
Parameter in Gaussian Function | 1 | Common value | |
RNN Feature-RNN PCA-RNN | Hidden unit | 10 | Common value |
Epochs of training | 1000 | Converged |
Model | Statistical Indicators | RMSE | MAPE | MAE | R2 |
---|---|---|---|---|---|
BPNN | Min | 0.8038 | 0.2022 | 0.6138 | 0.6967 |
Mean | 0.8435 | 0.2109 | 0.6344 | 0.879 | |
Max | 1.029 | 0.2447 | 0.721 | 0.9518 | |
GPR | / | 0.8034 | 0.2054 | 0.619 | 0.8688 |
LSTM | Min | 0.3198 | 0.0930 | 0.2386 | 0.9471 |
Mean | 0.3327 | 0.1004 | 0.2598 | 0.9655 | |
Max | 0.3483 | 0.1077 | 0.2753 | 0.9791 | |
RNN | Min | 0.8026 | 0.0507 | 0.6188 | 0.8601 |
Mean | 0.8044 | 0.0521 | 0.6193 | 0.8666 | |
Max | 0.8075 | 0.0533 | 0.6199 | 0.8723 | |
SVR | / | 0.8292 | 0.1864 | 0.6099 | 0.8814 |
Model | Statistical Indicators | RMSE | MAPE | MAE | R2 |
---|---|---|---|---|---|
Feature-BPNN | Min | 0.2425 | 0.0702 | 0.1832 | 0.9650 |
Mean | 0.3352 | 0.0975 | 0.2498 | 0.9806 | |
Max | 0.4575 | 0.1418 | 0.3218 | 0.9902 | |
Feature-GPR | / | 0.1898 | 0.0535 | 0.1379 | 0.9546 |
Feature-LSTM | Min | 0.1577 | 0.0429 | 0.1057 | 0.9592 |
Mean | 0.1745 | 0.0488 | 0.1212 | 0.9749 | |
Max | 0.1926 | 0.0535 | 0.1334 | 0.9942 | |
Feature-RNN | Min | 0.1693 | 0.0471 | 0.1232 | 0.9066 |
Mean | 0.2077 | 0.0613 | 0.1549 | 0.9648 | |
Max | 0.2613 | 0.0871 | 0.1937 | 0.9997 | |
Feature-SVR | / | 0.9976 | 0.1726 | 0.5726 | 0.704 |
Model | Statistical Indicators | RMSE | MAPE | MAE | R2 |
---|---|---|---|---|---|
PCA-BPNN | Min | 0.2058 | 0.0569 | 0.148 | 0.8455 |
Mean | 0.268 | 0.0793 | 0.2041 | 0.9199 | |
Max | 0.4854 | 0.1155 | 0.3558 | 0.9739 | |
PCA-GPR | Mean | 0.1706 | 0.046 | 0.1231 | 0.9686 |
Proposed Model | Min | 0.1380 | 0.0356 | 0.0958 | F0.9988 |
Mean | 0.1474 | 0.0382 | 0.1015 | 0.9989 | |
Max | 0.1592 | 0.0415 | 0.1088 | 0.9991 | |
PCA-RNN | Min | 0.1693 | 0.0471 | 0.1232 | 0.9167 |
Mean | 0.2077 | 0.0613 | 0.1549 | 0.9768 | |
Max | 0.2613 | 0.0871 | 0.1937 | 0.9897 | |
PCA-SVR | Mean | 0.3071 | 0.0726 | 0.2218 | 0.8684 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, D.; Zhang, H.; Wu, H. Short-Term Wind Speed Prediction Based on Principal Component Analysis and LSTM. Appl. Sci. 2020, 10, 4416. https://doi.org/10.3390/app10134416
Geng D, Zhang H, Wu H. Short-Term Wind Speed Prediction Based on Principal Component Analysis and LSTM. Applied Sciences. 2020; 10(13):4416. https://doi.org/10.3390/app10134416
Chicago/Turabian StyleGeng, Dawei, Haifeng Zhang, and Hongyu Wu. 2020. "Short-Term Wind Speed Prediction Based on Principal Component Analysis and LSTM" Applied Sciences 10, no. 13: 4416. https://doi.org/10.3390/app10134416
APA StyleGeng, D., Zhang, H., & Wu, H. (2020). Short-Term Wind Speed Prediction Based on Principal Component Analysis and LSTM. Applied Sciences, 10(13), 4416. https://doi.org/10.3390/app10134416