Collaborative Use of a Shared System Interface: The Role of User Gaze—Gaze Convergence Index Based on Synchronous Dual-Eyetracking
Abstract
:Featured Application
Abstract
1. Introduction
2. Theoretical Development
2.1. Gaze Convergence
2.2. Eye-Tracking Technology
2.3. Synchronous Dual Gaze Recording
3. Hypothesis Development
3.1. Gaze Convergence Index
3.2. Dyad Gaze Convergence and Its Impact
4. Methodology
4.1. Material and Apparatus
4.2. Users
4.3. Experimental Procedure
4.4. Study 1 Experimental Design
4.5. Study 2 Experimental Design
4.6. Measures
4.7. Statistical Analyses
5. Results
5.1. Study 1
5.2. Study 2
6. Discussion
6.1. Content Validity
6.2. Predictive Validity
6.3. Advantage of Real-Time Synchronized Gaze Recording in Multiuser Human-Computer Interactions Setting
6.4. Contributions
6.5. Implications and Research Perspectives
6.6. Limitations
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cyr, D.; Head, M.; Larios, H.; Pan, B. Exploring Human Images in Website Design: A Multi-Method Approach. MIS Q. 2009, 33, 539–566. [Google Scholar] [CrossRef] [Green Version]
- Belenky, D.; Ringenberg, M.; Olsen, J.; Aleven, V.; Rummel, N. Using Dual Eye-Tracking to Evaluate Students’ Collaboration with an Intelligent Tutoring System for Elementary-Level Fractions. In Proceedings of the 36th Annual Meeting of the Cognitive Science Society, Québec, QC, Canada, 23–26 July 2014. [Google Scholar]
- Desrochers, C.; Léger, P.-M.; Fredette, M.; Mirhoseini, S.; Sénécal, S. The arithmetic complexity of online grocery shopping: The moderating role of product pictures. Ind. Manag. Data Syst. 2019, 119, 1206–1222. [Google Scholar] [CrossRef]
- Djamasbi, S. Eye tracking and web experience. AIS Trans. Human-Comput. Interact. 2014, 6, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Etco, M.; Sénécal, S.; Léger, P.-M.; Fredette, M. The Influence of Online Search Behavior on Consumers’ Decision-Making Heuristics. J. Comput. Inf. Syst. 2017, 57, 344. [Google Scholar] [CrossRef]
- Riedl, R.; Léger, P.-M. Fundamentals of NeuroIS. Studies in Neuroscience, Psychology and Behavioral Economics; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Nyström, M.; Niehorster, D.C.; Cornelissen, T.; Garde, H. Real-time sharing of gaze data between multiple eye trackers–evaluation, tools, and advice. Behav. Res. Methods 2017, 49, 1310–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nüssli, M.-A. Dual Eye-Tracking Methods for the Study of Remote Collaborative Problem Solving; EPFL: Lausanne, Switzerland, 2011. [Google Scholar]
- Kwok, K.-W.; Sun, L.-W.; Mylonas, G.P.; James, D.R.C.; Orihuela-Espina, F.; Yang, G.-Z. Collaborative gaze channelling for improved cooperation during robotic assisted surgery. Ann. Biomed. Eng. 2012, 40, 2156–2167. [Google Scholar] [CrossRef] [Green Version]
- Sarker, S.; Valacich, J.; Sarker, S. Washington State University USA. Technology Adoption by Groups: A Valence Perspective. J. Assoc. Inf. Syst. 2005, 6, 37–71. [Google Scholar]
- Mekki Berrada, A.; Montréal, H.E.C. Trois Essais sur L’influence Relative et les Stratégies de Résolution de Conflit Lors d’une Prise de Décision D’achat en Ligne en Couple. Ph.D. Thesis, Université de Montréal, Montréal, QC, Canada, 2011. [Google Scholar]
- Briggs, P. Ecommerce in Canada 2018; eMarketer: New York, NY, USA, 2018. [Google Scholar]
- Uitdewilligen, S.; Waller, M.J.; Pitariu, A.H. Mental model updating and team adaptation. Small Group Res. 2013, 44, 127–158. [Google Scholar] [CrossRef]
- Eitel, A.; Scheiter, K.; Schüler, A.; Nyström, M.; Holmqvist, K. How a picture facilitates the process of learning from text: Evidence for scaffolding. Learn. Instruct. 2013, 28, 48–63. [Google Scholar] [CrossRef]
- Schnotz, W.; Wagner, I. Construction and elaboration of mental models through strategic conjoint processing of text and pictures. J. Educ. Psychol. 2018, 110, 850–863. [Google Scholar] [CrossRef]
- Thepsoonthorn, C.; Yokozuka, T.; Miura, S.; Ogawa, K.; Miyake, Y. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication. Sci. Rep. 2016, 6, 38261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Xu, S.; Zhang, S.; Luo, Y.; Geng, H. ERP evidence on how gaze convergence affects social attention. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Thepsoonthorn, C.; Ogawa, K.-I.; Miyake, Y. The Relationship between Robot’s Nonverbal Behaviour and Human’s Likability Based on Human’s Personality. Sci. Rep. 2018, 8, 8435. [Google Scholar] [CrossRef] [PubMed]
- Thepsoonthorn, C.; Yokozuka, T.; Kwon, J.; Yap, R.M.S.; Miura, S.; Ogawa, K.-i.; Miyake, Y. Look at You, Look at Me: Detection and Analysis of Mutual Gaze Convergence in Face-to-Face Interaction; IEEE: Piscataway, NJ, USA, 2015; pp. 581–586. [Google Scholar]
- Stewart, J.; Bederson, B.B.; Druin, A. Single Display Groupware: A Model for Co-Present Collaboration. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Pittsburgh, PA, USA, 15–20 May 1999; ACM: New York, NY, USA, 1999; pp. 286–293. [Google Scholar]
- Dimoka, A.; Pavlou, P.A.; Davis, F.D. Research Commentary-NeuroIS: The Potential of Cognitive Neuroscience for Information Systems Research. Inf. Syst. Res. 2011, 22, 687–702. [Google Scholar] [CrossRef]
- Riedl, R.; Fischer, T.; Léger, P.-M. A Decade of NeuroIS Research: Status Quo, Challenges, and Future Directions; ICIS: London, UK, 2017. [Google Scholar]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; OUP: Oxford, UK, 2011. [Google Scholar]
- Courtemanche, F.; Léger, P.-M.; Dufresne, A.; Fredette, M.; Labonté-LeMoyne, É.; Sénécal, S. Physiological heatmaps: A tool for visualizing users’ emotional reactions. Multimed. Tools Appl. 2018, 77, 11547–11574. [Google Scholar] [CrossRef] [Green Version]
- Shvarts, A.Y.; Stepanov, A.; Chumachenko, D. Automatic detection of gaze convergence in multimodal collaboration: A dual eye-tracking technology. Russ. J. Cogn. Sci. 2018, 5, 4–17. [Google Scholar]
- De Ana Ortiz, G.; Webster, J.; Montréal, H.E.C.; Queen’s, U. An Investigation of Information Systems Use Patterns: Technological Events as Triggers, the Effect of Time, and Consequences for Performance. MIS Q. 2013, 37, 1165–1188. [Google Scholar] [CrossRef] [Green Version]
- Burton-Jones, A.; Gallivan, M.J. Toward a Deeper Understanding of System Usage in Organizations: A Multilevel Perspective. MIS Q. 2007, 31, 657–679. [Google Scholar] [CrossRef] [Green Version]
- Trice, A.W.; Treacy, M.E. Utilization as a dependent variable in MIS research. ACM SIGMIS Database 1988, 19, 33–41. [Google Scholar] [CrossRef]
- Mirhoseini, S.; Montréal, H.E.C. Two Essays on the Use of Cognitive Load in Information Systems Design; HEC Montreal: Montreal, QC, Canada, 2018. [Google Scholar]
- DeStefano, D.; LeFevre, J.-A. Cognitive load in hypertext reading: A review. Comput. Hum. Behav. 2007, 23, 1616–1641. [Google Scholar] [CrossRef]
- Pfaff, M.S. Negative Affect Reduces Team Awareness: The Effects of Mood and Stress on Computer-Mediated Team Communication. Hum. Factors J. Hum. Factors Ergon. Soc. 2012, 54, 560–571. [Google Scholar] [CrossRef]
- Rousseau, V.; Aubé, C.; Savoie, A. Teamwork Behaviors: A Review and an Integration of Frameworks; Sage Publications: Thousand Oaks, CA, USA, 2006; Volume 37, pp. 540–570. [Google Scholar]
- Mathieu, J.E.; Goodwin, G.F.; Heffner, T.S.; Salas, E.; Cannon-Bowers, J.A. The Influence of Shared Mental Models on Team Process and Performance. J. Appl. Psychol. 2000, 85, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Benbasat, I.; Jiang, Z. Let’s Shop Online Together: An Empirical Investigation of Collaborative Online Shopping Support. Inf. Syst. Res. 2010, 21, 872–891. [Google Scholar] [CrossRef] [Green Version]
- Maynard, M.T.; Kennedy, D.M.; Sommer, S.A. Team adaptation: A fifteen-year synthesis (1998–2013) and framework for how this literature needs to “adapt” going forward. Eur. J. Work Organ. Psychol. 2015, 24, 652–677. [Google Scholar] [CrossRef]
- Gorman, J.C. Team Coordination and Dynamics: Two Central Issues. Curr. Dir. Psychol. Sci. 2014, 23, 355–360. [Google Scholar] [CrossRef]
- MacKenzie, S.B.; Podsakoff, P.M.; Podsakoff, N.P. Construct Measurement and Validation Procedures in MIS and Behavioral Research: Integrating New and Existing Techniques. MIS Q. 2011, 35, 293–334. [Google Scholar] [CrossRef]
- Moore, G.C.; Benbasat, I. Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Inf. Syst. Res. 1991, 2, 192–222. [Google Scholar] [CrossRef]
- Straub, D.; Boudreau, M.-C.; Gefen, D. Validation guidelines for IS positivist research. Commun. Assoc. Inf. Syst. 2004, 13, 24. [Google Scholar] [CrossRef]
- Trochim, W.M.K.; Donnelly, J.P.; Arora, K. Research Methods: The Essential Knowledge Base; Cengage Learning: Boston, MA, USA, 2016. [Google Scholar]
- Tchanou, A.Q.; Léger, P.-M.; Senecal, S.; Carmichael, L.; Fredette, M. Multiuser Human-Computer Interaction Settings: Preliminary Evidence of Online Shopping Platform Use by Couples. In Proceedings of the Human-Computer Interaction International Conference 2020, Copenhagen, Denmark, 19–24 July 2020. [Google Scholar]
- Smart Eye AB. Smart Eye Pro Manual; Smart Eye AB: Gothenburg, Sweden, 2015; Volume 6.1. [Google Scholar]
- Bohme, M.; Meyer, A.; Martinetz, T.; Barth, E. Remote Eye Tracking: State of the Art and Directions for Future Development; Citeseer: State College, PA, USA, 2006; pp. 12–17. [Google Scholar]
- Bulling, A.; Gellersen, H. Toward mobile eye-based human-computer interaction. IEEE Pervasive Comput. 2010, 9, 8–12. [Google Scholar] [CrossRef]
- Liu, K.; Wanner, F.; Nistico, W.; Nieser, M. Method for Automatically Identifying at Least One User of an Eye Tracking Device and Eye Tracking Device. U.S. Patent No. 10,521,012, 31 December 2019. [Google Scholar]
- Simons, D.J.; Levin, D.T. Change blindness. Trends Cogn. Sci. 1997, 1, 261–267. [Google Scholar] [CrossRef]
- Anderson, N.C.; Anderson, F.; Kingstone, A.; Bischof, W.F. A comparison of scanpath comparison methods. Behav. Res. Methods 2015, 47, 1377–1392. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.M.; Brockmole, J.R.; Castelhano, M.S.; Mack, M. Visual saliency does not account for eye movements during visual search in real-world scenes. In Eye Movements; Elsevier: Amsterdam, The Netherlands, 2007; p. 537. [Google Scholar]
- Mannan, S.; Ruddock, K.H.; Wooding, D.S. Automatic control of saccadic eye movements made in visual inspection of briefly presented 2-D images. Spat. Vis. 1995, 9, 363–386. [Google Scholar] [PubMed]
- Chen, S.; Epps, J. Using Task-Induced Pupil Diameter and Blink Rate to Infer Cognitive Load. Hum. Comput. Interact. 2014, 29, 390–413. [Google Scholar] [CrossRef]
- Fehrenbacher, D.D.; Djamasbi, S. Information systems and task demand: An exploratory pupillometry study of computerized decision making. Decis Support Syst. 2017, 97, 1–11. [Google Scholar] [CrossRef]
- Gopikrishna, Y. Measurement and Analysis of Mental Workload of Marine Team in Observing Hospital Management System. Res. J. Pharm. Technol. 2017, 10, 4359–4361. [Google Scholar] [CrossRef]
- Litchfield, D.; Ball, L.J. Rapid communication: Using another’s gaze as an explicit aid to insight problem solving. Q. J. Exp. Psychol. 2011, 64, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Lafond, D.; Jobidon, M.-E.; Aubé, C.; Tremblay, S. Evidence of Structure-Specific Teamwork Requirements and Implications for Team Design. Small Group Res. 2011, 42, 507–535. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Sharma, K.; Leftheriotis, I.; Giannakos, M. Utilizing Interactive Surfaces to Enhance Learning, Collaboration and Engagement: Insights from Learners’ Gaze and Speech. Sensors (Basel Switz.) 2020, 20, 1964. [Google Scholar] [CrossRef] [Green Version]
- Kawai, N. Attentional shift by eye gaze requires joint attention: Eye gaze cues are unique to shift attention. Jpn. Psychol. Res. 2011, 53, 292–301. [Google Scholar] [CrossRef]
- Ristic, J.; Wright, A.; Kingstone, A. Attentional control and reflexive orienting to gaze and arrow cues. Psychon. Bull. Rev. 2007, 14, 964–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathôt, S.; Cristino, F.; Gilchrist, I.D.; Theeuwes, J. A simple way to estimate similarity between pairs of eye movement sequences. J. Eye Mov. 2012, 5. [Google Scholar] [CrossRef]
- D’Angelo, S.; Begel, A. In Improving Communication Between Pair Programmers Using Shared Gaze Awareness. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; pp. 6245–6290. [Google Scholar]
- Jarodzka, H.; van Gog, T.; Dorr, M.; Scheiter, K.; Gerjets, P. Learning to see: Guiding students’ attention via a Model’s eye movements fosters learning. Learn. Instr. 2013, 25, 62–70. [Google Scholar] [CrossRef]
- Król, M. Learning From Peers’ Eye Movements in the Absence of Expert Guidance: A Proof of Concept Using Laboratory Stock Trading, Eye Tracking, and Machine Learning. Cogn. Sci. 2019, 43, e12716. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Caballero, D.; Verma, H.; Jermann, P.; Dillenbourg, P. Looking AT Versus Looking THROUGH: A Dual Eye-Tracking Study in MOOC Context; International Society of the Learning Sciences, Inc.: Bloomington, IN, USA, 2015. [Google Scholar]
- Zhang, Y.; Pfeuffer, K.; Chong, M.K.; Alexander, J.; Bulling, A.; Gellersen, H. Look together: Using gaze for assisting co-located collaborative search. Pers. Ubiquitous Comput. 2017, 21, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.; Virmani, S.; Sethi, V.; De, K.; Roy, P.P. An intelligent recommendation system using gaze and emotion detection. Multimed. Tools Appl. 2019, 78, 14231–14250. [Google Scholar] [CrossRef]
- Cattani, G.; Ferriani, S.; Mariani, M.M.; Mengoli, S. Tackling the “Galacticos” effect: Team familiarity and the performance of star-studded projects. Ind. Corp. Chang. 2013, 22, 1629–1662. [Google Scholar] [CrossRef] [Green Version]
- Janssen, J.; Erkens, G.; Kirschner, P.A.; Kanselaar, G. Influence of group member familiarity on online collaborative learning. Comput. Hum. Behav. 2009, 25, 161–170. [Google Scholar] [CrossRef]
- Abdi Sargezeh, B.; Tavakoli, N.; Daliri, M.R. Gender-based eye movement differences in passive indoor picture viewing: An eye-tracking study. Physiol. Behav. 2019, 206, 43–50. [Google Scholar] [CrossRef]
Variable | Mean | StD | 1st Qrtl | 2nd Qrtl | 3rd Qrtl | |||||
---|---|---|---|---|---|---|---|---|---|---|
C | D | C | D | C | D | C | D | C | D | |
Dyad GC | −333.51 | −1013.53 | −153.55 | −107.67 | −468.28 | −1126.12 | −261.59 | −1007.32 | −223.20 | −916.55 |
Min GC | −1832.14 | −1872.52 | −167.72 | −155.33 | −1992.26 | −2031.86 | −1831.51 | −1886.64 | −1661.59 | −1710.79 |
Max GC | −5.39 | −36.61 | −4.12 | −17.86 | −7.30 | −46.05 | −4.49 | −34.88 | −2.03 | −25.26 |
StD GC | −317.81 | −433.86 | −126.11 | −39.38 | −443.02 | −473.26 | −280.23 | −432.91 | −209.35 | −405.92 |
1st Qrtl GC | −127.96 | −653.06 | −39.72 | −81.14 | −166.37 | −722.63 | −135.78 | −664.00 | −93.14 | −570.49 |
2nd Qrtl GC | −224.02 | −931.74 | −94.87 | −157.93 | −293.32 | −1025.84 | −199.64 | −894.01 | −157.83 | −807.07 |
3rd Qrtl GC | −427.62 | −1428.92 | −277.82 | −125.41 | −631.48 | −1556.36 | −273.19 | −1404.40 | −247.67 | −1367.46 |
Variable | Mean | StD | 1st Qrtl | 2nd Qrtl | 3rd Qrtl |
---|---|---|---|---|---|
Dyad GC | −281.62 | −99.64 | −370.05 | −301.91 | −221.05 |
Dyad TP | 2.05 | 0.66 | 1.75 | 1.99 | 2.16 |
Dyad PD | 0.38 | 2.72 | −0.79 | 0.36 | 2.59 |
DV | Effect Estimate | DF | t | p-Value |
---|---|---|---|---|
Dyad TP | 26.19 | 46 | 2.90 | 0.0029 |
Dyad PD | −15.99 | 46 | −4.09 | 0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tchanou, A.Q.; Léger, P.-M.; Boasen, J.; Senecal, S.; Taher, J.A.; Fredette, M. Collaborative Use of a Shared System Interface: The Role of User Gaze—Gaze Convergence Index Based on Synchronous Dual-Eyetracking. Appl. Sci. 2020, 10, 4508. https://doi.org/10.3390/app10134508
Tchanou AQ, Léger P-M, Boasen J, Senecal S, Taher JA, Fredette M. Collaborative Use of a Shared System Interface: The Role of User Gaze—Gaze Convergence Index Based on Synchronous Dual-Eyetracking. Applied Sciences. 2020; 10(13):4508. https://doi.org/10.3390/app10134508
Chicago/Turabian StyleTchanou, Armel Quentin, Pierre-Majorique Léger, Jared Boasen, Sylvain Senecal, Jad Adam Taher, and Marc Fredette. 2020. "Collaborative Use of a Shared System Interface: The Role of User Gaze—Gaze Convergence Index Based on Synchronous Dual-Eyetracking" Applied Sciences 10, no. 13: 4508. https://doi.org/10.3390/app10134508
APA StyleTchanou, A. Q., Léger, P. -M., Boasen, J., Senecal, S., Taher, J. A., & Fredette, M. (2020). Collaborative Use of a Shared System Interface: The Role of User Gaze—Gaze Convergence Index Based on Synchronous Dual-Eyetracking. Applied Sciences, 10(13), 4508. https://doi.org/10.3390/app10134508