Special Issue on “Mapping and Monitoring of Geohazards”
1. Introduction
2. Mapping and Monitoring of Geohazards
2.1. Earthquake Hazard
2.2. Landslide Hazard
2.3. Volcanic Hazard
3. Future Developments for the Mapping and Monitoring of Geohazards
Acknowledgments
Conflicts of Interest
References
- Toth, C.; Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS J. Photogramm. Remote Sens. 2020, 115, 22–36. [Google Scholar] [CrossRef]
- Novellino, A.; Jordan, C.; Ager, G.; Bateson, L.; Fleming, C.; Confuorto, P. Remote sensing for natural or man-made disasters and environmental changes. In Geological Disaster Monitoring Based on Sensor Networks; Springer: Singapore, 2019; pp. 23–31. [Google Scholar]
- Hunter, J.A.; Burns, R.A.; Good, R.L.; Pullan, S.E.; Pugin, A.; Crow, H. Near-surface geophysical techniques for geohazards investigations: Some Canadian examples. Lead. Edge 2010, 29, 964–977. [Google Scholar] [CrossRef]
- Issaadi, A.; Semmane, F.; Yelles-Chaouche, A.; Galiana-Merino, J.J.; Layadi, K. A Shear-Wave Velocity Model in the City of Oued-Fodda (Northern Algeria) from Rayleigh Wave Ellipticity Inversion. Appl. Sci. 2020, 10, 1717. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Ko, S.H.; Jung, S.K.; Hyeon, J.W. Tertiary Waves Measured during 2017 Pohang Earthquake Using an Underwater Glider. Appl. Sci. 2019, 9, 3860. [Google Scholar] [CrossRef] [Green Version]
- Aguirre-Salado, A.I.; Vaquera-Huerta, H.; Aguirre-Salado, C.A.; Jiménez-Hernández, J.D.C.; Barragán, F.; Guzmán-Martínez, M. Facing Missing Observations in Data—A New Approach for Estimating Strength of Earthquakes on the Pacific Coast of Southern Mexico Using Random Censoring. Appl. Sci. 2019, 9, 2863. [Google Scholar] [CrossRef] [Green Version]
- Hölbling, D.; Abad, L.; Dabiri, Z.; Prasicek, G.; Tsai, T.T.; Argentin, A.L. Mapping and Analyzing the Evolution of the Butangbunasi Landslide using Landsat Time Series with Respect to Heavy Rainfall Events during Typhoons. Appl. Sci. 2020, 10, 630. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, X.; Liao, X.; Sun, J.; Zhang, S. Rockfall investigation and hazard assessment from Nang County to Jiacha County in Tibet. Appl. Sci. 2020, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Infante, D.; Di Martire, D.; Calcaterra, D.; Miele, P.; Scotto di Santolo, A.; Ramondini, M. Integrated Procedure for Monitoring and Assessment of Linear Infrastructures Safety (I-Pro MONALISA) Affected by Slope Instability. Appl. Sci. 2019, 9, 5535. [Google Scholar] [CrossRef] [Green Version]
- Gudiyangada Nachappa, T.; Tavakkoli Piralilou, S.; Ghorbanzadeh, O.; Shahabi, H.; Blaschke, T. Landslide Susceptibility Mapping for Austria Using Geons and Optimization with the Dempster-Shafer Theory. Appl. Sci. 2019, 9, 5393. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Cao, Y.; Zhou, C.; Wang, Y.; Huo, Z. Landslide Susceptibility Mapping Combining Information Gain Ratio and Support Vector Machines: A Case Study from Wushan Segment in the Three Gorges Reservoir Area, China. Appl. Sci. 2019, 9, 4756. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zuo, X.; Yu, J.; Zhou, B. Method for Mid-Long-Term Prediction of Landslides Movements Based on Optimized Apriori Algorithm. Appl. Sci. 2019, 9, 3819. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Huang, F.; Yan, L.; Cao, Z.; Chen, J.; Ye, Z. Landslide Susceptibility Prediction Using Particle-Swarm-Optimized Multilayer Perceptron: Comparisons with Multilayer-Perceptron-Only, BP Neural Network, and Information Value Models. Appl. Sci. 2019, 9, 3664. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.; Yue, J.; Chen, C.; Cong, K.; Zhu, S.; Bian, Y. Dynamic Displacement Forecasting of Dashuitian Landslide in China Using Variational Mode Decomposition and Stack Long Short-Term Memory Network. Appl. Sci. 2019, 9, 2951. [Google Scholar] [CrossRef] [Green Version]
- Novellino, A.; Engwell, S.L.; Grebby, S.; Day, S.; Cassidy, M.; Madden-Nadeau, A.; Watt, S.; Pyle, D.; Abdurrachman, M.; Edo Marshal Nurshal, M.; et al. Mapping recent shoreline changes spanning the lateral collapse of Anak Krakatau Volcano, Indonesia. Appl. Sci. 2020, 10, 536. [Google Scholar] [CrossRef] [Green Version]
- Grilli, S.T.; Tappin, D.R.; Carey, S.; Watt, S.F.; Ward, S.N.; Grilli, A.R.; Engwell, S.L.; Zhang, C.; Kirby, J.T.; Schambach, L.; et al. Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al. Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F. and Hanssen, R.F. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Sudmanns, M.; Tiede, D.; Lang, S.; Bergstedt, H.; Trost, G.; Augustin, H.; Baraldi, A.; Blaschke, T. Big Earth data: Disruptive changes in Earth observation data management and analysis? Int. J. Digit. Earth 2019, 1–19. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novellino, A.; Grebby, S. Special Issue on “Mapping and Monitoring of Geohazards”. Appl. Sci. 2020, 10, 4609. https://doi.org/10.3390/app10134609
Novellino A, Grebby S. Special Issue on “Mapping and Monitoring of Geohazards”. Applied Sciences. 2020; 10(13):4609. https://doi.org/10.3390/app10134609
Chicago/Turabian StyleNovellino, Alessandro, and Stephen Grebby. 2020. "Special Issue on “Mapping and Monitoring of Geohazards”" Applied Sciences 10, no. 13: 4609. https://doi.org/10.3390/app10134609
APA StyleNovellino, A., & Grebby, S. (2020). Special Issue on “Mapping and Monitoring of Geohazards”. Applied Sciences, 10(13), 4609. https://doi.org/10.3390/app10134609