Classification of Photoplethysmographic Signal Quality with Deep Convolution Neural Networks for Accurate Measurement of Cardiac Stroke Volume
Abstract
:1. Introduction
2. Impedance Cardiography
3. Method
3.1. Data Acquisition
3.2. Network Architectures
3.3. Experimental Protocol
3.4. Statistical Analysis
4. Results
4.1. Training Outcomes of Deep Convolution Neural Networks
4.2. Testing Outcomes of Deep Convolution Neural Networks
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Majumder, S.; Mondal, T.; Deen, M.J. Wearable sensors for remote health monitoring. Sensors 2017, 17, 130. [Google Scholar] [CrossRef] [PubMed]
- Sharwood-Smith, G.; Bruce, J.; Drummond, G. Assessment of pulse transit time to indicate cardiovascular changes during obstetric spinal anesthesia. Br. J. Anaesth. 2006, 96, 100–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelley, K.H. Photoplethysmography: Beyond the calculation of arterial oxygen saturation and heart rate. Anesth. Analg. 2007, 105, S31–S36. [Google Scholar] [CrossRef] [Green Version]
- Chon, K.H.; Dash, S.; Ju, K. Estimation of respiratory rate from photoplethysmogram data using time-frequency spectral estimation. IEEE Trans. Biomed. Eng. 2009, 56, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Wang, J.-J.; Su, C.-H.; Cheng, D.-C. Improvement of left ventricular ejection time measurement in the impedance cardiography combined with the reflection photoplethysmography. Sensors 2018, 18, 3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, D.; Simões-Capela, N.; Hoof, C.V.; Helleputte, N.V. Heart rate estimation from wrist-worn photoplethysmography: A review. IEEE Sens. J. 2019, 19, 6560–6570. [Google Scholar] [CrossRef]
- Allen, J.; Murray, A. Similarity in bilateral photoplethysmographic peripheral pulse wave characteristics at the ears, thumbs and toes. Physiol. Meas. 2000, 21, 369–377. [Google Scholar] [CrossRef]
- Allen, J. Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 2007, 28, R1–R39. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-H.; Chang, K.-M.; Fu, T.-H. Heart rate extraction from photoplethysmogram on fuzzy Logic discriminator. Eng. Appl. Artif. Intell. 2010, 23, 968–977. [Google Scholar] [CrossRef]
- Fischer, C.; Domer, B.; Wibmer, T.; Penzel, T. An algorithm for real-time pulse waveform segmentation and artifact detection in photoplethysmograms. IEEE J. Biomed. Health Inform. 2017, 21, 372–381. [Google Scholar] [CrossRef]
- Li, K.; Warren, S.; Natarajan, B. Onboard tagging for real-time quality assessment of photoplethysmograms acquired by a wireless reflectance pulse oximeter. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-H.; Wang, J.-J.; Chen, W.; Pan, K.-L.; Su, C.-H. Classification of photoplethysmographic signal quality with fuzzy neural network for improvement of stroke volume measurement. Appl. Sci. 2020, 10, 1476. [Google Scholar] [CrossRef] [Green Version]
- Pourbabaee, B.; Roshtkhari, M.J.; Khorasani, K. Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans. Syst. Man Cybern. Syst. 2018, 48, 2095–2104. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Gabbouj, M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans. Biomed. Eng. 2016, 63, 664–675. [Google Scholar] [CrossRef]
- Yildirim, O.; Plawiak, P.; Tan, S.; Acharya, U. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput. Biol. Med. 2018, 102, 411–420. [Google Scholar] [CrossRef]
- Jimenez-Serrano, S.; Yagüe-Mayans, J.; Simarro-Mondéjar, E.; Calvo, C.J.; Castells, F.; Millet, J. Atrial fibrillation detection using feedforward neural networks and automatically extracted signal features. Comput. Cardiol. Conf. 2017, 389. [Google Scholar] [CrossRef]
- Giorgio, A.; Rizzi, M.; Guaragnella, C. Efficient detection of ventricular late potentials on ECG signals based on wavelet denoising and SVM classification. Information 2019, 10, 328. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Chen, B.; Yao, B.; He, W. Arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access 2019, 7, 92871–92880. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Zeng, X. A multiresolution convolutional neural network for ECG-based biometric human identification in smart health applications. IEEE Access 2017, 5, 11805–11816. [Google Scholar] [CrossRef]
- Abdeldayem, S.S.; Bourlai, T. A novel approach for ECG-based human identification using spectral correlation and deep learning. IEEE Trans. Biogr. Behav. Iden. Sci. 2020, 2, 1–14. [Google Scholar] [CrossRef]
- Kubicek, W.G.; Karnegis, J.N.; Patterson, R.P.; Witsoe, D.A.; Mattson, R.H. Development and evaluation of an impedance cardiograph system. Aerosp. Med. 1966, 37, 1208–1212. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Proc. IEEE Conf. Comput. Vis. Pattern Recognit. 2016, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, 1556, 1409. [Google Scholar]
- Keras Applications. Available online: https://keras.io/applications/ (accessed on 14 May 2020).
- Chong, J.W.; Dao, D.K.; Salehizadeh, S.M.A.; Mcmanus, D.D.; Darling, C.E.; Chon, K.H.; Mendelson, Y. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach part I: Motion and noise artifact detection. Ann. Biomed. Eng. 2014, 42, 2238–2250. [Google Scholar] [CrossRef] [PubMed]
- Karlen, W.; Kobayashi, K.; Ansermino, J.M.; Dumont, G.A. Photoplethysmogram signal quality estimation using repeated Gaussian filters and cross-correlation. Physiol. Meas. 2012, 33, 1617–1629. [Google Scholar] [CrossRef]
- Pereira, T.; Ding, C.; Gadhoumi, K.; Tran, N.; Colorado, R.A.; Meisel, K.; Hu, X. Deep learning approaches for plethysmography signal quality assessment in the presence of atrial fibrillation. Physiol. Meas. 2019, 40, 125002. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.; Gadhoumi, K.; Ma, M.; Liu, X.; Xiao, R.; Colorado, R.A.; Keenan, K.J.; Meisel, K.; Hu, X. A supervised approach to robust photoplethysmography quality assessment. IEEE J. Biomed. Health Inform. 2020, 24, 649–657. [Google Scholar] [CrossRef] [PubMed]
- McVeigh, G.E. Pulse waveform analysis and arterial wall properties. Hypertension 2003, 41, 1010–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resnick, L.M.; Militianu, D.; Cunnings, A.J.; Pipe, J.G.; Evelhoch, J.L.; Soulen, R.L.; Lester, M.A. Pulse waveform analysis of arterial compliance: Relation to other techniques, age, and metabolic variables. Am. J. Hyperten. 2000, 13, 1243–1249. [Google Scholar] [CrossRef] [Green Version]
Type | Filter Size | Channel Number | Input Size |
---|---|---|---|
Conv1 | 3 × 3 | 64 | 150 × 150 × 3 |
3 × 3 | 64 | 150 × 150 × 64 | |
Max pool | 3 × 3 | - | 150 × 150 × 64 |
Conv2 | 3 × 3 | 128 | 75 × 75 × 64 |
3 × 3 | 128 | 75 × 75 × 128 | |
Max pool | 3 × 3 | - | 75 × 75 × 128 |
Conv3 | 3 × 3 | 256 | 37 × 37 × 128 |
3 × 3 | 256 | 37 × 37 × 256 | |
3 × 3 | 256 | 37 × 37 × 256 | |
3 × 3 | 256 | 37 × 37 × 256 | |
Max pool | 3 × 3 | - | 37 × 37 × 256 |
Conv4 | 3 × 3 | 512 | 18 × 18 × 256 |
3 × 3 | 512 | 18 × 18 × 512 | |
3 × 3 | 512 | 18 × 18 × 512 | |
3 × 3 | 512 | 18 × 18 × 512 | |
Max pool | 3 × 3 | - | 18 × 18 × 512 |
Conv5 | 3 × 3 | 512 | 9 × 9 × 512 |
3 × 3 3 × 3 | 512 512 | 9 × 9 × 512 9 × 9 × 512 | |
3 × 3 | 512 | 9 × 9 × 512 | |
Max pool | 3 × 3 | - | 9 × 9 × 512 |
Flattn | - | 1 | 4 × 4 × 512 |
Fc | - | 1 | 8192 |
Out | - | 1 | 1024 |
Type | Filter Size | Channel Number | Input Size | Times |
---|---|---|---|---|
Conv1 | 7 × 7 | 64 | 156 × 156 × 3 | 1 |
Max pool | 3 × 3 | - | 77 × 77 × 64 | 1 |
Conv2 | 1 × 1 | 64 | 38 × 38 × 64 | 3 |
3 × 3 | 64 | 38 × 38 × 64 | ||
1 × 1 | 256 | 38 × 38 × 256 | ||
Conv3 | 1 × 1 | 128 | 19 × 19 × 128 | 4 |
3 × 3 | 128 | 19 × 19 × 128 | ||
1 × 1 | 512 | 19 × 19 × 512 | ||
Conv4 | 1 × 1 | 256 | 10 × 10 × 256 | 6 |
3 × 3 | 256 | 10 × 10 × 256 | ||
1 × 1 | 1024 | 10 × 10 × 1024 | ||
Conv5 | 1 × 1 | 512 | 5 × 5 × 512 | 3 |
3 × 3 | 512 | 5 × 5 × 512 | ||
1 × 1 | 2048 | 5 × 5 × 2048 | ||
Avg pool | 7 × 7 | - | 5 × 5 × 2048 | 1 |
Flattn | - | 1 | 5 × 5 × 2048 | 1 |
Out | - | 1 | 51200 | 1 |
Subjects | Number of Pulses | High SQI | Middle SQI | Low SQI |
---|---|---|---|---|
1 | 213 | 97 | 7 | 109 |
2 | 231 | 160 | 7 | 64 |
3 | 198 | 52 | 6 | 140 |
4 | 235 | 132 | 8 | 95 |
5 | 303 | 160 | 7 | 136 |
6 | 234 | 79 | 6 | 149 |
7 | 235 | 81 | 6 | 148 |
8 | 193 | 112 | 3 | 78 |
9 | 209 | 8 | 1 | 200 |
10 | 249 | 105 | 6 | 138 |
11 | 261 | 79 | 7 | 175 |
12 | 159 | 32 | 4 | 123 |
13 | 205 | 93 | 2 | 110 |
14 | 210 | 152 | 3 | 55 |
All | 3135 | 1342 | 73 | 1720 |
Model | TP (N) | TN (N) | FP (N) | FN (N) | Accuracy (%) | Precision (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|---|
VGG-19 High vs. (Middle + Low) | 897 | 780 | 213 | 45 | 0.87 | 0.81 | 0.95 | 0.95 |
VGG-19 (High + Middle) vs. Low | 1006 | 774 | 146 | 9 | 0.92 | 0.87 | 0.99 | 0.99 |
ResNet-50 High vs. (Middle + Low) | 860 | 910 | 83 | 82 | 0.91 | 0.91 | 0.91 | 0.92 |
ResNet-50 (High + Middle) vs. Low | 933 | 886 | 34 | 82 | 0.94 | 0.96 | 0.92 | 0.92 |
SV Error (mL) | ||
---|---|---|
Group | VGG-19 | ResNet-50 |
High-quality group (N = 942) | 4.5 ± 14.7 | 2.6 ± 14.2 |
Middle-quality group (N = 73) | 25.4 ± 42.3 | 19.9 ± 35.1 |
Low-quality group (N = 920) | 64.6 ± 102.1 | 57.67 ± 95.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.-H.; Li, R.-X.; Wang, J.-J.; Chen, W.; Su, C.-H. Classification of Photoplethysmographic Signal Quality with Deep Convolution Neural Networks for Accurate Measurement of Cardiac Stroke Volume. Appl. Sci. 2020, 10, 4612. https://doi.org/10.3390/app10134612
Liu S-H, Li R-X, Wang J-J, Chen W, Su C-H. Classification of Photoplethysmographic Signal Quality with Deep Convolution Neural Networks for Accurate Measurement of Cardiac Stroke Volume. Applied Sciences. 2020; 10(13):4612. https://doi.org/10.3390/app10134612
Chicago/Turabian StyleLiu, Shing-Hong, Ren-Xuan Li, Jia-Jung Wang, Wenxi Chen, and Chun-Hung Su. 2020. "Classification of Photoplethysmographic Signal Quality with Deep Convolution Neural Networks for Accurate Measurement of Cardiac Stroke Volume" Applied Sciences 10, no. 13: 4612. https://doi.org/10.3390/app10134612
APA StyleLiu, S. -H., Li, R. -X., Wang, J. -J., Chen, W., & Su, C. -H. (2020). Classification of Photoplethysmographic Signal Quality with Deep Convolution Neural Networks for Accurate Measurement of Cardiac Stroke Volume. Applied Sciences, 10(13), 4612. https://doi.org/10.3390/app10134612