Effect of Diagonal Pattern Training on Trunk Function, Balance, and Gait in Stroke Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Sample Size Calculation
2.5. Study Design
2.6. Protocol
2.7. Evaluation
2.7.1. Trunk Impairment Scale (TIS)
2.7.2. Berg Balance Scale (BBS)
2.7.3. Meters Walk Test (10 MWT)
2.7.4. Walking Measurement Equipment (G-Walk)
2.7.5. Statistical Analysis
3. Result
4. Discussion
5. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dean, C.M.; Channon, E.F.; Hall, J.M. Sitting training early after stroke improves sitting ability and quality and carries over to standing up but not to walking: A randomised controlled trial. Aust. J. Physiother. 2007, 53, 97–102. [Google Scholar] [CrossRef]
- Morgan, P. The relationship between sitting balance and mobility outcome in stroke. Aust. J. Physiother. 1994, 40, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Karthikbabu, S.; John, M.S.; Manikandan, N.; Bhamini, K.R.; Chakrapani, M.; Akshatha, N. Role of trunk rehabilitation on trunk control, balance and gait in patients with chronic stroke: A pre-post design. Neurosci. Med. 2011, 2, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.D.; You, J.M.; Han, N.; Eom, M.J.; Kim, J.G. Ultrasonographic measurement of transverse abdominis in stroke patients. Ann. Rehabil. Med. 2014, 38, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Ryerson, S.; Byl, N.N.; Brown, D.A.; Wong, R.A.; Hidler, J.M. Altered trunk position sense and its relation to balance functions in people post-stroke. J. Neurol. Phys. Ther. JNPT 2008, 32, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Verheyden, G.; Nieuwboer, A.; Feys, H.; Thijs, V.; Vaes, K.; De Weerdt, W. Discriminant ability of the Trunk Impairment Scale: A comparison between stroke patients and healthy individuals. Disabil. Rehabil. 2005, 27, 1023–1028. [Google Scholar] [CrossRef]
- Dickstein, R.; Shefi, S.; Marcovitz, E.; Villa, Y. Electromyographic activity of voluntarily activated trunk flexor and extensor muscles in post-stroke hemiparetic subjects. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2004, 115, 790–796. [Google Scholar] [CrossRef]
- Verheyden, G.; Ruesen, C.; Gorissen, M.; Brumby, V.; Moran, R.; Burnett, M.; Ashburn, A. Postural alignment is altered in people with chronic stroke and related to motor and functional performance. J. Neurol. Phys. Ther. JNPT 2014, 38, 239–245. [Google Scholar] [CrossRef]
- Verheyden, G.; Vereeck, L.; Truijen, S.; Troch, M.; Herregodts, I.; Lafosse, C.; Nieuwboer, A.; De Weerdt, W. Trunk performance after stroke and the relationship with balance, gait and functional ability. Clin. Rehabil. 2006, 20, 451–458. [Google Scholar] [CrossRef]
- Cho, Y.H.; Cho, K.H.; Park, S.J. Effects of trunk rehabilitation with kinesio and placebo taping on static and dynamic sitting postural control in individuals with chronic stroke: A randomized controlled trial. Top. Stroke Rehabil. 2020, 6, 1–10. [Google Scholar] [CrossRef]
- Van Criekinge, T.; Saeys, W.; Hallemans, A.; Velghe, S.; Viskens, P.J.; Vereeck, L.; De Hertogh, W.; Truijen, S. Trunk biomechanics during hemiplegic gait after stroke: A systematic review. Gait Posture 2017, 54, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, Y.R.; Vijayakumar, K.; Abraham, J.M.; Misri, Z.K.; Suresh, B.V.; Unnikrishnan, B. Relationship between postural alignment in sitting by photogrammetry and seated postural control in post-stroke subjects. NeuroRehabilitation 2014, 35, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Dubey, L.; Karthikbabu, S. Trunk proprioceptive neuromuscular facilitation influences pulmonary function and respiratory muscle strength in a patient with pontine bleed. Neurol. India 2017, 65, 183. [Google Scholar] [PubMed]
- Khanal, D.; Singaravelan, R.; Khatri, S.M. Effectiveness of pelvic proprioceptive neuromuscular facilitation technique on facilitation of trunk movement in hemiparetic stroke patients. Dent. Med. Sci. 2013, 3, 29–37. [Google Scholar] [CrossRef]
- Sharma, V.; Kaur, J. Effect of core strengthening with pelvic proprioceptive neuromuscular facilitation on trunk, balance, gait, and function in chronic stroke. J. Exerc. Rehabil. 2017, 13, 200–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, R.; Lial, L.; Teles Monteiro, M.G.; Aragao, A.; Santos David, L.; Coertjens, M.; Silva-Junior, F.L.; Dias, G.; Velasques, B.; Ribeiro, P.; et al. Diagonal movement of the upper limb produces greater adaptive plasticity than sagittal plane flexion in the shoulder. Neurosci. Lett. 2017, 643, 8–15. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Verheyden, G.; Nieuwboer, A.; Mertin, J.; Preger, R.; Kiekens, C.; De Weerdt, W. The Trunk Impairment Scale: A new tool to measure motor impairment of the trunk after stroke. Clin. Rehabil. 2004, 18, 326–334. [Google Scholar] [CrossRef]
- Berg, K.; Wood-Dauphine, S.; Williams, J.; Gayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Physiother. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Liston, R.A.; Brouwer, B.J. Reliability and validity of measures obtained from stroke patients using the Balance Master. Arch. Phys. Med. Rehabil. 1996, 77, 425–430. [Google Scholar] [CrossRef]
- Green, J.; Forster, A.; Young, J. Reliability of gait speed measured by a timed walking test in patients one year after stroke. Clin. Rehabil. 2002, 16, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Pau, M.; Leban, B.; Collu, G.; Migliaccio, G.M. Effect of light and vigorous physical activity on balance and gait of older adults. Arch. Gerontol. Geriatr. 2014, 59, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Ng, S.S.; Ng, G.Y. A home-based program of transcutaneous electrical nerve stimulation and task-related trunk training improves trunk control in patients with stroke: A randomized controlled clinical trial. Neurorehabil. Neural Repair 2015, 29, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Chitra, J.; Joshi, D.D. The effect of proprioceptive neuromuscular facilitation techniques on trunk control in hemiplegic subjects: A pre post design. Physiother. J. Indian Assoc. Physiother. 2017, 11, 40. [Google Scholar]
- Sag, S.; Buyukavci, R.; Sahin, F.; Sag, M.S.; Dogu, B.; Kuran, B. Assessing the validity and reliability of the Turkish version of the Trunk Impairment Scale in stroke patients. North. Clin. Istanb. 2019, 6, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, S.M.; Jeon, S.H. Correlations among trunk impairment, functional performance, and muscle activity during forward reaching tasks in patients with chronic stroke. J. Phys. Ther. Sci. 2015, 27, 2955–2958. [Google Scholar] [CrossRef] [Green Version]
- Voight, M.L.; Hoogenboom, B.J.; Cook, G. The chop and lift reconsidered: Integrating neuromuscular principles into orthopedic and sports rehabilitation. N. Am. J. Sports Phys. Ther. NAJSPT 2008, 3, 151–159. [Google Scholar]
Classification | Time | Exercise Time | Rest Time | |
---|---|---|---|---|
Diagonal pattern exercise 1 | 1st stage | 5 | 1 min | 30 s |
Diagonal pattern exercise 2 | 5 | |||
Diagonal pattern exercise 3 | 2nd stage | 5 | 1 min | 30 s |
Diagonal pattern exercise 4 | 5 | |||
Diagonal pattern exercise 5 | 3rd stage | 5 | 1 min | 30 s |
Diagonal pattern exercise 6 | 5 | |||
Diagonal pattern exercise 7 | 4th stage | 5 | 1 min | 30 s |
Diagonal pattern exercise 8 | 5 | |||
Diagonal pattern exercise 9 | 5th stage | 5 | 1 min | 30 s |
Diagonal pattern exercise 10 | 5 |
Classification | Time | Exercise Time | Rest Time | |
---|---|---|---|---|
Trunk flexion | 1st stage | 5 | 1 min | 30 s |
Trunk extension | 5 | |||
Trunk flexion to extension | 2nd stage | 5 | 1 min | 30 s |
Trunk Extension to flexion | 5 | |||
Paretic side lateral flexion | 3rd stage | 5 | 1 min | 30 s |
Non-paretic side lateral flexion | 5 | |||
Mid position to paretic side rotation | 4th stage | 5 | 1 min | 30 s |
Mid position to non-paretic side rotation | 5 | |||
Paretic side to non-paretic side rotation | 5th stage | 5 | 1 min | 30 s |
Non paretic side to paretic side rotation | 5 |
Experimental Group (n = 21) | Control Group (n = 21) | p | |
---|---|---|---|
Gender (male/female) | 16/5 | 14/7 | 0.495 |
Affected side (left/right) | 8/13 | 10/11 | 0.533 |
stroke type (infarction/hemorrhage) | 12/9 | 11/10 | 0.757 |
Onset (month) | 13.00 ± 2.68 | 13.48 ± 2.82 | 0.578 |
K-MMSE (point) | 26.14 ± 1.62 | 26.33 ± 1.71 | 0.713 |
Age (years) | 67.43 ± 4.74 | 67.57 ± 3.28 | 0.910 |
Height (cm) | 165.05 ± 6.10 | 163.76 ± 5.44 | 0.475 |
Weight (kg) | 69.86 ± 6.60 | 70.43 ± 6.22 | 0.774 |
Classification | Experimental Group (n = 21) | Control Group (n = 21) | F | p | ||
---|---|---|---|---|---|---|
TIS (score) | Before | After | Before | After | ||
Static (7) | 6.19 ± 0.68 | 6.76 ± 0.44 1,2 | 6.29 ± 0.64 | 6.52 ± 0.60 1 | 25.130 | 0.01 *,a |
Dynamic (10) | 3.24 ± 0.54 | 3.81 ± 0.68 1,2 | 3.62 ± 0.74 | 3.81 ± 0.75 1 | 29.091 | 0.01 *,a |
Coordination (6) | 1.52 ± 0.51 | 2.05 ± 0.81 1,2 | 1.76 0 ± 0.44 | 1.90 ± 0.54 | 15.806 | 0.01 *,a |
Total (23) | 10.95 ± 1.40 | 12.62 ± 1.28 1,2 | 11.67 ± 1.39 | 12.24 ± 1.22 1 | 70.575 | 0.01 *,a |
Classification | Experimental Group (n = 21) | Control Group (n = 21) | F | p | ||
---|---|---|---|---|---|---|
Before | After | Before | After | |||
BBS (score) | 38.48 ± 4.17 | 40.43 ± 4.50 1,2 | 38.43 ± 3.90 | 39.05 ± 4.32 1 | 16.345 | 0.01 *,a |
10 MWT (s) | 25.00 ± 5.24 | 22.48 ± 5.50 1,2 | 24.48 ± 5.03 | 23.48 ± 4.32 1 | 22.750 | 0.01 *,a |
Classification | Experimental Group (n = 21) | Control Group (n = 21) | F | p | ||
---|---|---|---|---|---|---|
Before | After | Before | After | |||
Cadence (step/min) | 69.28 ± 10.40 | 79.18 ± 15.28 1,2 | 70.00 ± 11.40 | 72.63 ± 12.40 1 | 13.167 | 0.01 *,a |
Speed (m/s) | 0.61 ± 0.10 | 0.74 ± 0.12 1,2 | 0.61 ± 0.11 | 0.67 ± 0.13 1 | 22.268 | 0.01 *,a |
Stride length (m) | 0.77 ± 0.22 | 0.85 ± 0.26 1,2 | 0.78 ± 0.21 | 0.81 ± 0.19 1 | 24.161 | 0.01 *,a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.J.; Oh, S. Effect of Diagonal Pattern Training on Trunk Function, Balance, and Gait in Stroke Patients. Appl. Sci. 2020, 10, 4635. https://doi.org/10.3390/app10134635
Park SJ, Oh S. Effect of Diagonal Pattern Training on Trunk Function, Balance, and Gait in Stroke Patients. Applied Sciences. 2020; 10(13):4635. https://doi.org/10.3390/app10134635
Chicago/Turabian StylePark, Shin Jun, and Seunghue Oh. 2020. "Effect of Diagonal Pattern Training on Trunk Function, Balance, and Gait in Stroke Patients" Applied Sciences 10, no. 13: 4635. https://doi.org/10.3390/app10134635
APA StylePark, S. J., & Oh, S. (2020). Effect of Diagonal Pattern Training on Trunk Function, Balance, and Gait in Stroke Patients. Applied Sciences, 10(13), 4635. https://doi.org/10.3390/app10134635