Comparing Semantic Differential Methods in Affective Engineering Processes: A Case Study on Vehicle Instrument Panels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Semantic Pairs
2.3. Samples
2.4. Evaluation Method
2.5. Experimental Procedure
2.6. Analysis
2.7. Suammry
3. Results
3.1. Correlation between Semantic Pairs and Design Parameters
3.2. Analysis on Direct Questionnaires on Perceived Distinguishability of Samples per Semantic Pair
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.; Shao, F.; Barnes, C.; Childs, T.; Henson, B. Exploring relationships between touch perception and surface physical properties. Int. J. Des. 2009, 3, 67–76. [Google Scholar]
- Krishna, A. Sensory Marketing: Research on the Sensuality of Products; Routledge: Abingdon, UK, 2011. [Google Scholar]
- Philippe, F.; Schacher, L.; Adolphe, D.C.; Dacremont, C. Tactile feeling: Sensory analysis applied to textile goods. Text. Res. J. 2004, 74, 1066–1072. [Google Scholar] [CrossRef]
- Green, W.S.; Jordan, P.W. Pleasure with Products: Beyond Usability; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Nagamachi, M. Kansei/Affective Engineering; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Nagamachi, M.; Lokman, A.M. Innovations of Kansei Engineering; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Schütte, S.T.; Eklund, J.; Axelsson, J.R.; Nagamachi, M. Concepts, methods and tools in Kansei engineering. Theor. Issues Ergon. Sci. 2004, 5, 214–231. [Google Scholar] [CrossRef]
- Samadiani, N.; Huang, G.; Cai, B.; Luo, W.; Chi, C.-H.; Xiang, Y.; He, J. A review on automatic facial expression recognition systems assisted by multimodal sensor data. Sensors 2019, 19, 1863. [Google Scholar] [CrossRef] [Green Version]
- Vogt, T.; André, E.; Wagner, J. Automatic recognition of emotions from speech: A review of the literature and recommendations for practical realisation. In Affect and Emotion in Human-Computer Interaction; Springer: Berlin, Germany, 2008; pp. 75–91. [Google Scholar]
- Fitzsimons, G.J.; Hutchinson, J.W.; Williams, P.; Alba, J.W.; Chartrand, T.L.; Huber, J.; Kardes, F.R.; Menon, G.; Raghubir, P.; Russo, J.E. Non-conscious influences on consumer choice. Mark. Lett. 2002, 13, 269–279. [Google Scholar] [CrossRef]
- Verhagen, T.; Hooff, B.V.D.; Meents, S. Toward a better use of the semantic differential in IS research: An integrative framework of suggested action. J. Assoc. Inform. Syst. 2015, 16, 1. [Google Scholar] [CrossRef] [Green Version]
- Al-Hindawe, J. Considerations when constructing a semantic differential scale. La Trobe Pap. Linguist. 1996, 9, 1–9. [Google Scholar]
- Chráska, M.; Chrásková, M. Semantic differential and its risks in the measurement of students’ attitudes. Procedia Soc. Behav. Sci. 2016, 217, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Cant, J.S.; Goodale, M.A. Scratching beneath the surface: New insights into the functional properties of the lateral occipital area and parahippocampal place area. J. Neurosci. 2011, 31, 8248–8258. [Google Scholar] [CrossRef] [Green Version]
- Wastiels, L.; Schifferstein, H.; Wouters, I.; Heylighen, A. Touching materials visually: About the dominance of vision in building material assessment. Int. J. Des. 2013, 7, 31–41. [Google Scholar]
- Shao, F.; Chen, X.; Barnes, C.; Henson, B. A novel tactile sensation measurement system for qualifying touch perception. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2010, 224, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Tiest, W.M.B. Tactual perception of material properties. Vis. Res. 2010, 50, 2775–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hollins, M.; Bensmaïa, S.; Karlof, K.; Young, F. Individual differences in perceptual space for tactile textures: Evidence from multidimensional scaling. Percept. Psychophys. 2000, 62, 1534–1544. [Google Scholar] [CrossRef] [PubMed]
- Picard, D.; Dacremont, C.; Valentin, D.; Giboreau, A. Perceptual dimensions of tactile textures. Acta Psychol. 2003, 114, 165–184. [Google Scholar] [CrossRef] [PubMed]
- Tiest, W.M.B.; Kappers, A.M. Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol. 2006, 121, 1–20. [Google Scholar] [CrossRef]
- Gaissert, N.; Wallraven, C. Categorizing natural objects: A comparison of the visual and the haptic modalities. Exp. Brain Res. 2012, 216, 123–134. [Google Scholar] [CrossRef]
- Schifferstein, H.N.; Hekkert, P. Product Experience; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Klöcker, A.; Wiertlewski, M.; Théate, V.; Hayward, V.; Thonnard, J.-L. Physical factors influencing pleasant touch during tactile exploration. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Wongsriruksa, S.; Howes, P.; Conreen, M.; Miodownik, M. The use of physical property data to predict the touch perception of materials. Mater. Des. 2012, 42, 238–244. [Google Scholar] [CrossRef]
- Fleming, R.W. Material perception. Ann. Rev. Vis. Sci. 2017, 3, 365–388. [Google Scholar] [CrossRef]
- Kim, W.; Lee, Y.; Lee, J.H.; Shin, G.W.; Yun, M.H. A comparative study on designer and customer preference models of leather for vehicle. Int. J. Ind. Ergon. 2018, 65, 110–121. [Google Scholar] [CrossRef]
- Bahn, S.-W.; Lee, C.; Lee, J.-H.; Yun, M.-H. Development of Luxuriousness Models for Automobile Crash Pad based on Subjective and Objective. J. Ergon. Soc. Korea 2006, 25, 187–195. [Google Scholar]
- Shin, B.; Park, Y. A Study on the Emotional Characteristics by Reflectance and Color of the Metal as Interior Finish. In Proceedings of the Conference of the Korean Society of Color Studies, Seoul, Korea, 24–26 July 2016; pp. 33–36. [Google Scholar]
- Lee, H.; Park, S.; Park, K.; Lee, H. An evaluation of the comfort and pattern design for cover fabric of train seats. J. Korean Soc. Railw. 2000, 12, 183–189. [Google Scholar]
- Vieira, J.; Osório, J.M.A.; Mouta, S.; Delgado, P.; Portinha, A.; Meireles, J.F.; Santos, J.A. Kansei engineering as a tool for the design of in-vehicle rubber keypads. Appl. Ergon. 2017, 61, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, H.; Ryu, T.; Oh, K.; Yun, M.-H.; Kim, K.-J. Development of customer satisfaction models for automotive interior materials. Int. J. Ind. Ergon. 2006, 36, 323–330. [Google Scholar] [CrossRef]
- Lee, Y.; Park, S.-K.; Chun, Y.; Lee, J.-H.; Bahn, S.-W.; Yun, M.-H. Ergonomics Study of Surface Characteristics for Instrument Panel. In Proceedings of the Conference of the Korean Society of Automotive Engineers, Gyeongju, Korea, 22–28 August 2005; pp. 1915–1920. [Google Scholar]
- Lévy, P. Beyond kansei engineering: The emancipation of kansei design. Int. J. Des. 2013, 7, 83–94. [Google Scholar]
- Nagamachi, M. Kansei engineering: The implication and applications to product development. In Proceedings of the IEEE SMC’99 International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028), Tokyo, Japan, 12–15 October 1999; pp. 273–278. [Google Scholar]
- Mamaghani, N.K.; Rahimian, E.; Mortezaei, S.-R. Kansei engineering approach for consumer’s perception of the ketchup sauce bottle. In Proceedings of the 5th Kanesi Engineering and Emotion Research, International Conference (KEER2014), Linköping; Sweden, 11–13 June; pp. 1487–1494.
- Yang, C.-C.; Chang, H.-C. Selecting representative affective dimensions using Procrustes analysis: An application to mobile phone design. Appl. Ergon. 2012, 43, 1072–1080. [Google Scholar] [CrossRef]
- Guo, F.; Liu, W.L.; Liu, F.T.; Wang, H.; Wang, T.B. Emotional design method of product presented in multi-dimensional variables based on Kansei Engineering. J. Eng. Des. 2014, 25, 194–212. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Yeh, C.-H.; Wei, C.-C. How will the use of graphics affect visual aesthetics? A user-centered approach for web page design. Int. J. Hum.-Comp. Stud. 2013, 71, 217–227. [Google Scholar] [CrossRef]
- Murakami, T.; Kroonenberg, P.M. Three-mode models and individual differences in semantic differential data. Multivar. Behav. Res. 2003, 38, 247–283. [Google Scholar] [CrossRef]
- Bhise, V.D.; Mallick, P.K.; Sarma, V.H. Determining Perceptual Characteristics of Automotive Interior Materials. SAE Int. J. Mat. Manuf. 2009, 2, 1–11. [Google Scholar] [CrossRef]
- Luible, C.; Varheenmaa, M.; Magnenat-Thalmann, N.; Meinander, H. Subjective fabric evaluation. In Proceedings of the 2007 International Conference on Cyberworlds (CW’07), Hannover, Germany, 24–26 October 2007; pp. 285–291. [Google Scholar]
- Skedung, L.; Danerlöv, K.; Olofsson, U.; Johannesson, C.M.; Aikala, M.; Kettle, J.; Arvidsson, M.; Berglund, B.; Rutland, M.W. Tactile perception: Finger friction, surface roughness and perceived coarseness. Tribol. Int. 2011, 44, 505–512. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Park, B.-S.; Lee, C.-J. A Product-Focused Process Design System (PFPDS) for High Comforts Artificial Leather Fabrics. Text. Color. Finish. 2008, 20, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Rose, A.F.; Schnipper, J.L.; Park, E.R.; Poon, E.G.; Li, Q.; Middleton, B. Using qualitative studies to improve the usability of an EMR. J. Biomed. Inform. 2005, 38, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Meilgaard, M.C.; Carr, B.T.; Civille, G.V. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Chen, Y.-T.; Chuang, M.-C. The Difference of Imagery Perception between Visual and Tactile Sensation. Int. J. Affect. Eng. 2015, 14, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Herbeth, N.; Blumenthal, D. Product appraisal dimensions impact emotional responses and visual acceptability of instrument panels. Food Qual. Prefer. 2013, 29, 53–64. [Google Scholar] [CrossRef]
- Jones, M. Sensory perception in materials selection for industrial/product design. Int. J. Des. Objects 2013, 6, 17–31. [Google Scholar]
- Jung, G.-H.; Park, S.-J.; Kim, S.-M.; Jung, E.-S. Effects of Design Factors of the Instrument Cluster Panel on Consumers’ Affection Applying Robust Design. J. Ergon. Soc. Korea 2010, 29, 25–31. [Google Scholar]
- Kim, H.; Ku, J. Perceived Quality Study for Automobile interior. In Proceedings of the Conference of the Ergonomic Society of Korea, Busan, Korea, 15–16 October 2010; pp. 242–247. [Google Scholar]
- Fleming, R.W. Visual perception of materials and their properties. Vis. Res. 2014, 94, 62–75. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.; Yu, J.; Park, J.; Jung, E.; Choi, J.; Lee, K. A study on extraction of visual, tactile design parameter for improving the emotional quality about internal parts of the vehicle. In Proceedings of the Fall Conference of Korean Institute of Industrial Engineering, Suwon, Korea, 13 November 2013; pp. 493–497. [Google Scholar]
- Park, S. A Study on Visual Texture of Artificial Leather According to the Color and Material Texture: Focused on Factor Analysis Regarding Perception of Artificial Leather as Being Natural. Master’s Thesis, Ewha Womans University, Seoul, Korea, 2017. Unpublished work. [Google Scholar]
- Oğlakcioğlu, N.; Marmarali, A. Thermal comfort properties of some knitted structures. Fibres Text. East. Eur. 2007, 15, 64–65. [Google Scholar]
- Heller, M.A. The Psychology of Touch; Psychology Press: London, UK, 2013. [Google Scholar]
- Peck, J.; Childers, T.L. To have and to hold: The influence of haptic information on product judgments. J. Mark. 2003, 67, 35–48. [Google Scholar] [CrossRef]
- Fleming, R.W.; Wiebel, C.; Gegenfurtner, K. Perceptual qualities and material classes. J. Vis. 2013, 13, 9. [Google Scholar] [CrossRef]
- Sharan, L.; Rosenholtz, R.; Adelson, E. Material perception: What can you see in a brief glance? J. Vis. 2009, 9, 784. [Google Scholar] [CrossRef]
- Wiebel, C.B.; Valsecchi, M.; Gegenfurtner, K.R. The speed and accuracy of material recognition in natural images. Atten. Percept. Psychophys. 2013, 75, 954–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, E.; Wiebel, C.B.; Gegenfurtner, K.R. Visual and haptic representations of material properties. Multisens. Res. 2013, 26, 429–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holliins, M.; Faldowski, R.; Rao, S.; Young, F. Perceptual dimensions of tactile surface texture: A multidimensional scaling analysis. Percept. Psychophys. 1993, 54, 697–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higashi, K.; Okamoto, S.; Nagano, H.; Konyo, M.; Yamada, Y. Perceived hardness by tapping: The role of a secondary mode of vibration. In Proceedings of the International AsiaHaptics Conference, Kashiwanoha, Japan, 29 November–1 December 2016; pp. 27–32. [Google Scholar]
- Rust, N.C.; Stocker, A.A. Ambiguity and invariance: Two fundamental challenges for visual processing. Curr. Opin. Neurobiol. 2010, 20, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Maia, I.; Santos, J.; Abreu, M.J.; Miranda, T.; Carneiro, N.; Soares, G. PVC-based synthetic leather to provide more comfortable and sustainable vehicles. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Kazimierz Dolny, Poland, 21–23 November 2019; p. 122006. [Google Scholar]
- Erev, I.; Ert, E.; Yechiam, E. Loss aversion, diminishing sensitivity, and the effect of experience on repeated decisions. J. Behav. Decis. Mak. 2008, 21, 575–597. [Google Scholar] [CrossRef]
- Grohmann, B.; Spangenberg, E.R.; Sprott, D.E. The influence of tactile input on the evaluation of retail product offerings. J. Retail. 2007, 83, 237–245. [Google Scholar] [CrossRef]
Evaluated Semantic Pairs | Definitions |
---|---|
Dark–Bright | How bright the surface of leather is when you see it. |
Matt–Glossy | How glossy the surface of leather is when you see it. |
Cooling–Warming | How warming the leather is when you touch it. |
Dry–Moist | How moist the leather is when you touch it. |
Slippery–Sticky | How sticky the surface of leather is when you rub or press it. |
Flat–Rugged | How rugged the surface of leather is when you touch it. |
Hard–Soft | How soft the surface of leather is when you tap it. |
Sample No. | Gray Scale | Gloss | Thermal Conductivity (W/mK) | WVTR (g/m2·day) | Squeak | Ra (µm) | Softness (mm) |
---|---|---|---|---|---|---|---|
1 | 3.187 | 1.1 | 0.123 | 629 | 0.075 | 18.086 | 3.7 |
2 | 3.14 | 1.2 | 0.119 | 617 | 0.068 | 15.495 | 3.9 |
3 | 3.18 | 1.1 | 0.122 | 553 | 0.055 | 21.073 | 4.1 |
4 | 3.14 | 1.1 | 0.123 | 640 | 0.052 | 16.966 | 4.1 |
5 | 4.867 | 1.2 | 0.131 | 716 | 0.043 | 16.155 | 3.9 |
6 | 4.817 | 0.6 | 0.122 | 1150 | 0.388 | 15.178 | 4.57 |
Semantic Pairs | Design Parameters | Interpretation of Semantic Pairs |
---|---|---|
Dark–Bright | Gray Scale | Feels brighter as the gray scale decreases. |
Matt–Glossy | Gloss | Feels glossier as the gloss increases. |
Cooling–Warming | Thermal Conductivity | Feels more warming as the thermal conductivity increases. |
Dry–Moist | WVTR | Feels drier as WVTR increases. |
Slippery–Sticky | Squeak | Feels stickier as the squeak increases. |
Flat–Rugged | Ra | Feels more rugged as Ra increases. |
Hard–Soft | Softness | Feels softer as the softness increases. |
Evaluation Type | Dark– Bright | Matt– Glossy | Cooling– Warming | Dry– Moist | Slippery– Sticky | Flat– Rugged | Hard– Soft | |
---|---|---|---|---|---|---|---|---|
AE 1 | Correlation coefficient | −0.513 ** | 0.018 | 0.002 | −0.294 ** | 0.106 | 0.405 ** | 0.151 |
p-value | 0.000 | 0.849 | 0.980 | 0.000 | 0.251 | 0.000 | 0.072 | |
N | 144 | 144 | 144 | 144 | 144 | 144 | 144 | |
AE 2 | Correlation coefficient | −0.381 ** | 0.000 | −0.114 | −0.174 * | −0.095 | 0.381 ** | 0.174 * |
p-value | 0.000 | 1.000 | 0.214 | 0.037 | 0.303 | 0.000 | 0.037 | |
N | 144 | 144 | 144 | 144 | 144 | 144 | 144 | |
RE | Correlation coefficient | −0.614 ** | 0.058 | −0.111 | −0.282 ** | 0.317 ** | 0.343 ** | −0.180 * |
p-value | 0.000 | 0.526 | 0.229 | 0.001 | 0.000 | 0.000 | 0.031 | |
N | 144 | 144 | 144 | 144 | 144 | 144 | 144 |
Evaluation Type | Semantic Pair | |||||||
---|---|---|---|---|---|---|---|---|
Dark–Bright | Matt–Glossy | |||||||
Mean | SD | F | p-value | Mean | SD | F | p-value | |
AE 1 | 3.88 | 1.90 | 2.08 | 0.14 | 4.00 | 1.55 | 1.15 | 0.32 |
AE 2 | 3.67 | 1.76 | 3.71 | 1.77 | ||||
RE | 4.29 | 1.78 | 4.17 | 1.46 | ||||
Cooling–Warming | Dry–Moist | |||||||
Mean | SD | F | p-value | Mean | SD | F | p-value | |
AE 1 | 2.92 | 1.47 | 1.27 | 0.29 | 3.63 | 1.50 | 0.27 | 0.76 |
AE 2 | 3.33 | 1.49 | 3.50 | 1.47 | ||||
RE | 3.42 | 1.50 | 3.71 | 1.68 | ||||
Slippery–Sticky | Flat–Rugged | |||||||
Mean | SD | F | p-value | Mean | SD | F | p-value | |
AE 1 | 4.17 | 1.13 | 0.15 | 0.81 | 4.17 | 1.55 | 0.40 | 0.67 |
AE 2 | 4.08 | 1.25 | 4.17 | 1.43 | ||||
RE | 4.00 | 1.72 | 4.46 | 1.32 | ||||
Hard–Soft † | ||||||||
Mean | SD | F | p-value | |||||
AE 1 | 4.67 | 1.66 | 3.35 | 0.04 | ||||
AE 2 | 5.00 | 1.35 | ||||||
RE | 5.33 | 1.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, G.W.; Park, S.; Kim, Y.M.; Lee, Y.; Yun, M.H. Comparing Semantic Differential Methods in Affective Engineering Processes: A Case Study on Vehicle Instrument Panels. Appl. Sci. 2020, 10, 4751. https://doi.org/10.3390/app10144751
Shin GW, Park S, Kim YM, Lee Y, Yun MH. Comparing Semantic Differential Methods in Affective Engineering Processes: A Case Study on Vehicle Instrument Panels. Applied Sciences. 2020; 10(14):4751. https://doi.org/10.3390/app10144751
Chicago/Turabian StyleShin, Gee Won, Sunghwan Park, Yong Min Kim, Yushin Lee, and Myung Hwan Yun. 2020. "Comparing Semantic Differential Methods in Affective Engineering Processes: A Case Study on Vehicle Instrument Panels" Applied Sciences 10, no. 14: 4751. https://doi.org/10.3390/app10144751
APA StyleShin, G. W., Park, S., Kim, Y. M., Lee, Y., & Yun, M. H. (2020). Comparing Semantic Differential Methods in Affective Engineering Processes: A Case Study on Vehicle Instrument Panels. Applied Sciences, 10(14), 4751. https://doi.org/10.3390/app10144751