Stress Wave Propagation through Rock Joints Filled with Viscoelastic Medium Considering Different Water Contents
Abstract
:1. Introduction
2. Method
3. Results
3.1. Experimental Calibration
3.2. Parametric Studies
3.2.1. Case of One Single Filled Joint
3.2.2. Case of Multiple Parallel Filled Joints
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barton, N. A review of the shear strength of filled discontinuities in rock. Nor. Geotech. Inst. Publ. 1974, 105, 1–38. [Google Scholar]
- Jaeger, J.C.; Cook, N.G.; Zimmerman, R. Fundamentals of Rock Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Cook, N.G.W. Natural Joints in Rock: Mechanical, Hydraulic and Seismic Behaviour and Properties Under Normal Stress. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1992, 29, 198–223. [Google Scholar] [CrossRef]
- Goodman, R.E. Methods of Geological Engineering in Discontinuous Rocks; West Pubublishing Company: Eagan, MN, USA, 1976. [Google Scholar]
- Sun, G.Z. Rock Mass Structure Mechanics; Science Press: Beijing, China, 1988. (In Chinese) [Google Scholar]
- Guo, S.; Qi, S. Numerical study on progressive failure of hard rock samples with an unfilled undulate joint. Eng. Geol. 2015, 193, 173–182. [Google Scholar] [CrossRef]
- Zheng, B.; Qi, S. A new index to describe joint roughness coefficient (jrc) under cyclic shear. Eng. Geol. 2016, 212, 72–85. [Google Scholar] [CrossRef]
- Indraratna, B.; Oliveira, D.A.F.; Brown, E.T. A shear-displacement criterion for soil-infilled rock discontinuities. Géotechnique 2010, 60, 623–633. [Google Scholar] [CrossRef]
- Papaliangas, T.; Hencher, S.R.; Lumsden, A.C.; Manolopoulou, S. The effect of frictional fill thickness on the shear strength of rock discontinuities. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1993, 30, 81–91. [Google Scholar] [CrossRef]
- Pereira, J.P. Rolling friction and shear behaviour of rock discontinuities filled with sand. Int. J. Rock Mech. Min. Sci. 1997, 34, 244.e1–244.e17. [Google Scholar] [CrossRef]
- Li, J.C.; Ma, G.W. Experimental study of stress wave propagation across a filled rock joint. Int. J. Rock Mech. Min. Sci. 2009, 46, 471–478. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, J. Effect of water content on p-wave attenuation across a rock fracture filled with granular materials. Rock Mech. Rock Eng. 2015, 48, 867–871. [Google Scholar] [CrossRef]
- Huang, X.; Qi, S.; Yao, W.; Xia, K. Effect of Filling Humidity on the Propagation of High-Amplitude Stress Waves through an Artificial Joint. Geotech. Test. J. 2019, 42, 20170192. [Google Scholar] [CrossRef]
- Verruijt, A. An Introduction to Soil Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 24. [Google Scholar]
- Das, B.; Luo, Z. Principles of Soil Dynamics; Nelson Education: Toronto, ON, Canada, 2016. [Google Scholar]
- Yoshioka, N.; Kikuchi, M. Visco-elastic response of joints to transmission waves. Geophys. Res. Lett. 1993, 20, 1143–1146. [Google Scholar] [CrossRef]
- Pyrak-Nolte, L.J.; Myer, L.R.; Cook, N.G.W. Transmission of seismic waves across single natural fractures. J. Geophys. Res. Space Phys. 1990, 95, 8617–8638. [Google Scholar] [CrossRef]
- Myer, L.; Pyrak-Nolte, L.; Cook, N. Effects of single fractures on seismic wave propagation. Rock Jt. 1990, 15, 467–473. [Google Scholar]
- Carcione, J.M.; Picotti, S. Reflection and transmission coefficients of a fracture in transversely isotropic media. Stud. Geophys. et Geod. 2011, 56, 307–322. [Google Scholar] [CrossRef]
- Zhu, J.; Perino, A.; Zhao, G.F.; Barla, G.; Li, J.C.; Ma, G.W.; Zhao, J. Seismic response of a single and a set of filled joints of viscoelastic deformational behaviour. Geophys. J. Int. 2011, 186, 1315–1330. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Qi, S.; Liu, Y.; Zhan, Z. Stress wave propagation through viscous-elastic jointed rock masses using propagator matrix method (PMM). Geophys. J. Int. 2015, 200, 452–470. [Google Scholar] [CrossRef] [Green Version]
- Perino, A. Wave Propagation through Discontinuous Media in Rock Engineering. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2011. [Google Scholar]
- Perino, A.; Orta, R.; Barla, G. Wave Propagation in Discontinuous Media by the Scattering Matrix Method. Rock Mech. Rock Eng. 2012, 45, 901–918. [Google Scholar] [CrossRef]
- Li, J.; Ma, G.; Huang, X. Analysis of Wave Propagation Through a Filled Rock Joint. Rock Mech. Rock Eng. 2009, 43, 789–798. [Google Scholar] [CrossRef]
- Sayers, C.; Taleghani, A.D.; Adachi, J. The effect of mineralization on the ratio of normal to tangential compliance of fractures. Geophys. Prospect. 2009, 57, 439–446. [Google Scholar] [CrossRef]
- Ma, G.W.; Li, J.C.; Zhao, J. Three-phase medium model for filled rock joint and interaction with stress waves. Int. J. Numer. Anal. Methods Geéomeéch. 2010, 35, 97–110. [Google Scholar] [CrossRef]
- Desai, C.S.; Zaman, M.M.; Lightner, J.G.; Siriwardane, H.J. Thin-layer element for interfaces and joints. Int. J. Numer. Anal. Methods Geéomeéch. 1984, 8, 19–43. [Google Scholar] [CrossRef]
- Sharma, K.G.; Desai, C.S. Analysis and Implementation of Thin? Layer Element for Interfaces and Joints. J. Eng. Mech. 1992, 118, 2442–2462. [Google Scholar] [CrossRef]
- Li, J.; Wu, W.; Li, H.; Zhu, J.; Zhao, J. A thin-layer interface model for wave propagation through filled rock joints. J. Appl. Geophys. 2013, 91, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.B.; Zhao, X.B.; Wu, W.; Zhao, J. Wave propagation across rock joints filled with viscoelastic medium using modified recursive method. J. Appl. Geophys. 2012, 86, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Rokhlin, S.; Wang, Y. Analysis of boundary conditions for elastic wave interaction with an interface between two solids. J. Acoust. Soc. Am. 1991, 89, 503–515. [Google Scholar] [CrossRef]
- Hopkins, D.; Myer, L.; Cook, N. Seismic wave attenuation across parallel fractures as a function of fracture stiffness and spacing. EOS Trans. AGU 1988, 69, 1427–1436. [Google Scholar]
- Cai, J.G.; Zhao, J. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses. Int. J. Rock Mech. Min. Sci. 2000, 37, 661–682. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, X.; Cai, J.G. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour. Int. J. Rock Mech. Min. Sci. 2006, 43, 776–788. [Google Scholar] [CrossRef]
- Li, J.; Ma, G.; Zhao, J. An equivalent viscoelastic model for rock mass with parallel joints. J. Geophys. Res. Space Phys. 2010, 115, 115. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Zhao, X.B.; Li, J.; Zhao, G.; Zhao, J. Normally incident wave propagation across a joint set with the virtual wave source method. J. Appl. Geophys. 2011, 73, 283–288. [Google Scholar] [CrossRef]
- Kennett, B. Seismic Wave Propagation in Stratified Media; ANU Press: Canberra, Australia, 2009. [Google Scholar]
- Aki, K.; Richards, P.G. Quantitative Seismology; University Science Books: Mill Valley, CA, USA, 2002; Volume 1. [Google Scholar]
- Zhao, X.B.; Zhu, J.; Zhao, J.; Cai, J.G. Study of wave attenuation across parallel fractures using propagator matrix method. Int. J. Numer. Anal. Methods Geéomeéch. 2011, 36, 1264–1279. [Google Scholar] [CrossRef]
- Carcione, J.M. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media; Elsevier: Amsterdam, The Netherlands, 2007; Volume 38. [Google Scholar]
- Bedford, A.; Drumheller, D. Elastic Wave Propagation; Wiley & Sons: Hoboken, NJ, USA, 1994. [Google Scholar]
- Wu, W.; Zhu, J.B.; Zhao, J. Dynamic response of a rock fracture filled with viscoelastic materials. Eng. Geol. 2013, 160, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Qi, S.; Guo, S.; Dong, W. Experimental Study of Ultrasonic Waves Propagating Through a Rock Mass with a Single Joint and Multiple Parallel Joints. Rock Mech. Rock Eng. 2013, 47, 549–559. [Google Scholar] [CrossRef]
- Zhao, X.B.; Zhao, J.; Hefny, A.M.; Cai, J.G. Normal Transmission of S-Wave Across Parallel Fractures with Coulomb Slip Behavior. J. Eng. Mech. 2006, 132, 641–650. [Google Scholar] [CrossRef]
- Wu, W.; Zhu, J.B.; Zhao, J. A further study on seismic response of a set of parallel rock fractures filled with viscoelastic materials. Geophys. J. Int. 2012, 192, 671–675. [Google Scholar] [CrossRef] [Green Version]
Parameters of the Filled Medium | Water Content | ||||
---|---|---|---|---|---|
0% | 2% | 5% | 10% | 15% | |
ρf (kg∙m−3) | 1572 | 1603 | 1650 | 1729 | 1807 |
Vpp (m∙s−1) | 296 | 270 | 240 | 220 | 185 |
Vsp (m∙s−1) | 197 | 180 | 160 | 146 | 123 |
Qp | 300 | 120 | 30 | 6 | 1.5 |
Qs | 200 | 80 | 20 | 4 | 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Qi, S.; Zheng, B.; Liu, Y.; Xue, L.; Liang, N. Stress Wave Propagation through Rock Joints Filled with Viscoelastic Medium Considering Different Water Contents. Appl. Sci. 2020, 10, 4797. https://doi.org/10.3390/app10144797
Huang X, Qi S, Zheng B, Liu Y, Xue L, Liang N. Stress Wave Propagation through Rock Joints Filled with Viscoelastic Medium Considering Different Water Contents. Applied Sciences. 2020; 10(14):4797. https://doi.org/10.3390/app10144797
Chicago/Turabian StyleHuang, Xiaolin, Shengwen Qi, Bowen Zheng, Youshan Liu, Lei Xue, and Ning Liang. 2020. "Stress Wave Propagation through Rock Joints Filled with Viscoelastic Medium Considering Different Water Contents" Applied Sciences 10, no. 14: 4797. https://doi.org/10.3390/app10144797
APA StyleHuang, X., Qi, S., Zheng, B., Liu, Y., Xue, L., & Liang, N. (2020). Stress Wave Propagation through Rock Joints Filled with Viscoelastic Medium Considering Different Water Contents. Applied Sciences, 10(14), 4797. https://doi.org/10.3390/app10144797