Mineral Carbonation of CO2 in Mafic Plutonic Rocks, I—Screening Criteria and Application to a Case Study in Southwest Portugal
Abstract
:1. Introduction
2. Methodology
2.1. Screening and Ranking Criteria
- Geological conditions
- Lithological composition—the mineralogical composition of the rocks is a fundamental aspect to address in order to achieve the desired objectives. An expedited modal classification based on the relative percentage of mafic minerals (i.e., olivine, pyroxene, amphibole, and biotite) observed in thin sections was used to classify each massif into three classes, favoring those targets with the highest percentage of minerals enriched in calcium, magnesium, and iron.
- Area—since data on subsurface geology in the study area are quite rare, the outcrop area is a relevant indicator for a first assessment of the size of the targets under study. In most cases, the mapped area corresponds to the outcrop area and can be estimated directly, but in cases where the unit under study is partially covered by more recent sediments, its determination is more difficult. Three classes were defined, and in situations of uncertainty, we always chose a conservative assessment.
- Expected volume—the volume of rock masses was estimated by considering the previous criterion (area); the shape of each geological unit (stratiform or batholith); and, in some cases, any available geophysical information. As was the case for the previous criterion, in situations of uncertainty, a conservative assessment was always adopted.
- Existence of a seal unit—the existence of an impermeable layer overlaying the target unit represents a particularly favorable structural situation, as this cover will act as a barrier to CO2 leakage for in situ mineral carbonation. The Carbfix project developed an injection method in which CO2 is injected dissolved in water, and thus CO2 buoyancy will not occur and the existence of a seal is not strictly necessary [11,28]. In Alentejo, the basal levels of tertiary deposits overlaying the Paleozoic and Mesozoic massifs generally correspond to impermeable clayey sediments. In the most favorable situations, where this tertiary coverage exists, a weight of 3 was assigned. In the remaining situations, where the formations crop out without any cover, or are covered by sands with Miocene age or later, a zero weight was assigned.
- Fracture density—the main constraints when injecting fluids into plutonic rocks are low permeability and porosity. Fracture density controls the permeability and porosity of rock masses; a higher fracture density facilitates fluid circulation and thus in situ carbonation. For each geological formation, the fracture density was assessed by fracture pattern studies in outcrops and quarries using a scanline approach with measurement of fracture frequency. The massifs were divided into three categories: more than 10 fractures/m, 3–10 fractures/m, and fewer than 3 fractures/m, to which indices 9, 6, and 1 were assigned, respectively.
- Socioeconomic and environmental constraints
- 6.
- Distance to CO2 sources—transport of CO2 over long distances is a highly penalizing factor. Thus, for this criterion, three categories were defined as a function of the distance to which values 9, 6, and 1 were assigned, respectively, for distances of less than 10 km, between 10 and 100 km, and over 100 km.
- 7.
- Social and demographic situation—building an industry for in situ carbonation will not be well accepted in urban areas. For this criterion, two categories were defined, wherein an index of 3 was assigned to rural regions and zero was assigned to urban areas.
- 8.
- Existence of productive aquifers—groundwater is a value that must be preserved. Thus, geological units that correspond to productive aquifers were completely excluded on the basis of this criterion.
- 9.
- Environmental restrictions—this type of project is prohibited in natural parks and other protected areas. This criterion was considered, but no geological formations favorable to in situ carbonation were identified in protected areas.
2.2. Petrographic, Mineral Chemistry, and Geochemical Techniques
3. Results
3.1. The Sines Massif
3.1.1. Geological Setting
3.1.2. Fracture Characterization
3.1.3. Petrography, Mineral Chemistry, and Geochemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IEA. Energy Technology Perspectives 2017: Catalysing Energy Technology Transformations; IEA/OECD: Paris, France, 2017. [CrossRef]
- UNFCCC. Adoption of the Paris Agreement—Proposal by the President; UNFCCC—United Nations Framework Convention on Climate Change: Paris, France, 2015; p. 31. [Google Scholar]
- APA. Roadmap for Carbon Neutrality 2050—Long-Term Strategy for Carbon Neutrality of the Portuguese Economy by 2050; Agência Portuguesa do Ambiente: Lisbon, Portugal, 2019; p. 102.
- European Commission. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; European Comission: Brussels, Belgium, 2019; p. 24. [Google Scholar]
- Boavida, D.; Carneiro, J.; Martinez, R.; van den Broek, M.; Ramirez, A.; Rimi, A.; Tosato, G.; Gastine, M. Planning CCS Development in the West Mediterranean. Energy Procedia 2013, 37, 3212–3220. [Google Scholar] [CrossRef] [Green Version]
- Seixas, J.; Fortes, P.; Dias, L.; Carneiro, J.; Boavida, D.; Aguiar, R.; Marques, F.; Fernandes, V.; Helseth, J.; Ciesielska, J.; et al. CO2 Capture and Storage in Portugal: A Bridge to a Low Carbon Economy; FCT-UNL: Lisbon, Portugal, 2015; p. 42. [Google Scholar]
- EU ETS. European Union Emission Trading System—European Union Transaction Log. Available online: https://ec.europa.eu/clima/ets/oha.do (accessed on 2 December 2019).
- Carneiro, J.; Martinez, R.; Suaréz, I.; Zarhloule, Y.; Rimi, A. Injection rates and cost estimates for CO2 storage in the west Mediterranean region. Environ. Earth Sci. 2015. [Google Scholar] [CrossRef]
- Van den Broek, M.; Boavida, D.; Cabal, H.; Carneiro, J.; Fortes, P.; Gouveia, J.; Labriet, M.; Lechón, Y.; Martinez, R.; Mesquita, P.; et al. Report with Selection of Most Promising CCS Infrastructure Options. COMET Technical Note TN6.4; University of Utrech: Utrecht, The Netherlands, 2013; p. 173. [Google Scholar]
- Veloso, F.M.L. STRATEGY CCUS-Strategic planning of Regions and Territories in Europe for low-carbon energy and industry through CCUS Coordination and Support Action (CSA). In Proceedings of the CO2GEONET Open Forum, Venice, Italy, 6–9 May 2019. [Google Scholar]
- Matter, J.M.; Stute, M.; Snaebjornsdottir, S.O.; Oelkers, E.H.; Gislason, S.R.; Aradottir, E.S.; Sigfusson, B.; Gunnarsson, I.; Sigurdardottir, H.; Gunnlaugsson, E.; et al. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 2016, 352, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zevenhoven, R.; Eloneva, S.; Teir, S. Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage. Catal. Today 2006, 115, 73–79. [Google Scholar] [CrossRef]
- Goldberg, D.S.; Takahashi, T.; Slagle, A.L. Carbon dioxide sequestration in deep-sea basalt. Proc. Natl. Acad. Sci. USA 2008, 105, 9920–9925. [Google Scholar] [CrossRef] [Green Version]
- Andreani, M.; Luquot, L.; Gouze, P.; Godard, M.; Hoisé, E.; Gibert, B. Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO2-Rich Brine through Peridotites. Environ. Sci. Technol. 2009, 43, 1226–1231. [Google Scholar] [CrossRef]
- Gislason, S.R.; Oelkers, E.H. Carbon Storage in Basalt. Science 2014, 344, 373–374. [Google Scholar] [CrossRef]
- Druckenmiller, M.L.; Maroto-Valer, M.M. Carbon sequestration using brine of adjusted pH to form mineral carbonates. Fuel Process. Technol. 2005, 86, 1599–1614. [Google Scholar] [CrossRef]
- McGrail, B.P.; Spane, F.A.; Amonette, J.E.; Thompson, C.R.; Brown, C.F. Injection and Monitoring at the Wallula Basalt Pilot Project. Energy Procedia 2014, 63, 2939–2948. [Google Scholar] [CrossRef] [Green Version]
- Hanchen, M.; Prigiobbe, V.; Baciocchi, R.; Mazzotti, M. Precipitation in the Mg-carbonate system—Effects of temperature and CO2 pressure. Chem. Eng. Sci. 2008, 63, 1012–1028. [Google Scholar] [CrossRef]
- Romão, I.S.; Gando-Ferreira, L.M.; da Silva, M.M.V.G.; Zevenhoven, R. CO2 sequestration with serpentinite and metaperidotite from Northeast Portugal. Miner. Eng. 2016, 94, 104–114. [Google Scholar] [CrossRef]
- Sanna, A.; Uibu, M.; Caramanna, G.; Kuusik, R.; Maroto-Valer, M.M. A review of mineral carbonation technologies to sequester CO2. Chem. Soc. Rev. 2014, 43, 8049–8080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beerling, D.J.; Leake, J.R.; Long, S.P.; Scholes, J.D.; Ton, J.; Nelson, P.N.; Bird, M.; Kantzas, E.; Taylor, L.L.; Sarkar, B.; et al. Farming with crops and rocks to address global climate, food and soil security. Nat. Plants 2018, 4, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.C.S.; Sheen, J.-D.; Chen, S.-Y.; Fan, Y.-C. Feasibility of CO2 Fixation via Artificial Rock Weathering. Ind. Eng. Chem. Res. 2001, 40, 3902–3905. [Google Scholar] [CrossRef]
- Moita, P.; Berrezueta, E.; Abdoulghafour, H.; Beltrame, M.; Pedro, J.; Mirão, J.; Miguel, C.; Galacho, C.; Sitzia, F.; Barrulas, P.; et al. Mineral carbonation of CO2 in mafic plutonic rocks. II: Early-phase SC CO2-brine-rock interaction. Appl. Sci. 2020, 10, 5083. [Google Scholar]
- Bachu, S. Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change. Energy Convers. Manag. 2000, 41, 953–970. [Google Scholar] [CrossRef]
- CO2CRC. Storage Capacity Estimation, Site Selection and Characterisation for CO2 Storage Projects; RPT08-1001; Cooperative Research Centre for Greenhouse Gas Technologies: Canberra, Australia, 2008; p. 52. [Google Scholar]
- NETL. Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations. 2013 Revised Edition; DOE/NETL-2013/1605; National Energy Technology Laboratory: Pittsburgh, PA, USA, 2013; p. 110. [Google Scholar]
- Oldenburg, C. Health, Safety, and Environmental Screening and Ranking Framework for Geologic CO2 Storage Site Selection; LNBL: Sacramento, CA, USA, 2005; p. 22. [Google Scholar]
- Ragnheidardottir, E.; Sigurdardottir, H.; Kristjansdottir, H.; Harvey, W. Opportunities and challenges for CarbFix: An evaluation of capacities and costs for the pilot scale mineralization sequestration project at Hellisheidi, Iceland and beyond. Int. J. Greenh. Gas Control 2011, 5, 1065–1072. [Google Scholar] [CrossRef]
- Georgiou, C.D.; Sun, H.J.; McKay, C.P.; Grintzalis, K.; Papapostolou, I.; Zisimopoulos, D.; Panagiotidis, K.; Zhang, G.; Koutsopoulou, E.; Christidis, G.E.; et al. Evidence for photochemical production of reactive oxygen species in desert soils. Nat. Commun. 2015, 6, 7100. [Google Scholar] [CrossRef] [Green Version]
- Beltrame, M.; Liberato, M.; Mirão, J.; Santos, H.; Barrulas, P.; Branco, F.; Gonçalves, L.; Candeias, A.; Schiavon, N. Islamic and post Islamic ceramics from the town of Santarém (Portugal): The continuity of ceramic technology in a transforming society. J. Archaeol. Sci. Rep. 2019, 23, 910–928. [Google Scholar] [CrossRef]
- Teixeira, C. La structure annulaire subvolcanique des massifs éruptifs de Sintra, Sines et Monchique. In Est. Cient. Oferecidos em Homenagem ao Prof. Carrington da Costa; Junta de Investigação do Ultramar: Lisbon, Portugal, 1962; pp. 41–49. [Google Scholar]
- Ribeiro, A.; Antunes, M.T.; Ferreira, M.P.; Rocha, R.B.; Soares, A.F.; Zbyszewski, G.; Moitinho de Almeida, F.; Carvalho, D.D.; Monteiro, J.H.; Serviços Geológicos de, P. Introduction à la Géologie Générale du Portugal; Serviços Geológicos de Portugal: Lisbon, Portugal, 1979. [Google Scholar]
- Carvalho, J.P.G.; Torres, L.M.; Afilhado, A. Delimitação do maciço sub-vulcânico de Sines offshore a partir de dados geofísicos. Comum. Serv. Geol. Port. 1998, D57–D60. [Google Scholar]
- Inverno, C.; Manuppella, G.; Zbyszewski, G.; Pais, J.; Ribeiro, L. Notícia Explicativa da Folha 42-C Santiago do Cacém. Carta Geológica de Portugal de 1/50 000; Serviços Geológicos de Portugal: Lisbon, Portugal, 1993. [Google Scholar]
- Miranda, R.; Valadares, V.; Terrinha, P.; Mata, J.; Azevedo, M.d.R.; Gaspar, M.; Kullberg, J.C.; Ribeiro, C. Age constraints on the Late Cretaceous alkaline magmatism on the West Iberian Margin. Cretac. Res. 2009, 30, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Canilho, M.H. Estudo geológico-petrográfico do maciço eruptivo de Sines. Bol. Mus. Lab. Min. FCUL 1972, 12, 77–161. [Google Scholar]
- GeoAlgar. Pedreira Monte Chãos Estudo Geológico-Geotécnico. Internal Report to APS (Administração do Porto de Sines); GeoAlgar: Sines, Portugal, 2019; p. 38. [Google Scholar]
- Canilho, M.H. Elementos de geoquímica do maciço ígneo de Sines. Ciências Da Terra UNL 1989, 10, 65–80. [Google Scholar]
- Schaef, H.T.; McGrail, B.P.; Owen, A.T. Carbonate mineralization of volcanic province basalts. Int. J. Greenh. Gas Control 2010, 4, 249–261. [Google Scholar] [CrossRef]
- Rosenbauer, R.J.; Thomas, B.; Bischoff, J.L.; Palandri, J. Carbon sequestration via reaction with basaltic rocks: Geochemical modeling and experimental results. Geochim. Cosmochim. Acta 2012, 89, 116–133. [Google Scholar] [CrossRef]
- Alfredsson, H.A.; Oelkers, E.H.; Hardarsson, B.S.; Franzson, H.; Gunnlaugsson, E.; Gislason, S.R. The geology and water chemistry of the Hellisheidi, SW-Iceland carbon storage site. Int. J. Greenh. Gas Control 2013, 12, 399–418. [Google Scholar] [CrossRef] [Green Version]
- Luckow, P.; Wise, M.A.; Dooley, J.J.; Kim, S.H. Large-scale utilization of biomass energy and carbon dioxide capture and storage in the transport and electricity sectors under stringent CO2 concentration limit scenarios. Int. J. Greenh. Gas Control 2010, 4, 865–877. [Google Scholar] [CrossRef]
Criteria | Classes | Weight | |
---|---|---|---|
Geological conditions | |||
C1—Lithological composition | Ultramafic—more than 90% of mafic minerals | 9 | |
Mafic—40–90% mafic minerals | 6 | ||
Intermediate—10–39% of mafic minerals | 1 | ||
C2—Outcropping area | Over 20 km2 | 3 | |
From 10 to 20 km2 | 2 | ||
Less than 10 km2 | 1 | ||
C3—Expected volume | Over 20 km3 | 6 | |
From 10 to 20 km3 | 3 | ||
Less than 10 km3 | Eliminatory criterion | ||
C4—Existence of a seal unit | Existent | 3 | |
Not known | 0 | ||
C5—Fracture density | More than 10 fractures/m | 9 | |
3–10 fractures/m | 6 | ||
Fewer than 3 fractures/m | 1 | ||
Socioeconomic constraints | |||
C6—Distance to CO2 sources | Less than 10 km | 9 | |
From 10 to 100 km | 6 | ||
Over 100 km | 1 | ||
C7—Social and demographic situation | Urban area | 3 | |
Rural | 0 | ||
C8—Existence of productive aquifers | No | 3 | |
Yes | Eliminatory criterion | ||
C9—Environmental restrictions | No restrictions | 0 | |
Protected areas | Eliminatory criterion |
Criterion | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | ∑ | |
---|---|---|---|---|---|---|---|---|---|---|---|
Geological Formation | |||||||||||
1—Sines massif | 6 | 3 | 6 | 0 | 6 | 9 | 0 | 0 | 0 | 30 | |
2—Diabases from Iberian Pyrite Belt | 1 | 2 | 3 | 3 | 9 | 6 | 3 | 0 | 0 | 27 | |
3—Gabbros of Torrão‒Odivelas | 6 | 3 | 6 | 3 | 1 | 6 | 3 | 0 | 0 | 28 | |
4—Beja gabbros | 6 | 3 | 6 | 0 | 1 | 1 | 3 | Elim | 0 | --- | |
5—Ophiolitic sequences | 9 | 1 | Elim | 0 | 9 | 6 | 3 | 0 | 0 | --- | |
6—Alter do Chão/Cabeço Vide massif | 9 | 3 | 6 | 0 | 6 | 1 | 3 | Elim | 0 | --- | |
7—Veiros massif | 6 | 1 | Elim | 0 | 1 | 1 | 3 | 0 | 0 | --- | |
8—Vale de Maceiras massif | 6 | 2 | 3 | 0 | 1 | 1 | 3 | 0 | 0 | 16 | |
9—Campo Maior massif | 6 | 3 | 6 | 0 | 6 | 1 | 3 | 0 | 0 | 25 | |
10—Elvas massif | 6 | 2 | 3 | 0 | 6 | 1 | 0 | 0 | 0 | 18 | |
Elim—eliminatory criterion. |
Scanline 1 | Scanline 2 | Scanline 2* | Scanline 3 | ||
---|---|---|---|---|---|
Data | Length (cm) | 1275 | 1250 | 590 | 2630 |
Latitude | 37.94978° | 37.9514° | 37.94924° | ||
Longitude | −8.85078° | −8.84634° | −8.84187° | ||
Azimuth | 70° | 60° | 135° | ||
Number of discontinuities | 63 | 62 | 66 | 153 | |
Discontinuities per m | 4.9 | 5.0 | 11.2 | 5.8 | |
Length of section between two consecutives fractures (cm) | Average | 24.5 | 24.5 | 10.7 | 10.7 |
Standard deviation | 20.7 | 23.2 | 11.0 | 11.0 | |
Maximum value | 103 | 120 | 57 | 57 | |
Minimum value | 4 | 3 | 1 | 1 | |
Sum of sections > 10 cm | 1167 | 1150 | 373 | 373 | |
RQD (%) | 91.5 | 92.0 | 63.2 | 63.2 |
at % | Cumulate Gabbro | |||||||||
Olivine n = 5 | Pyroxene n = 3 | Amphibole n = 4 | Plagioclase n = 4 | Ilmenite n = 2 | ||||||
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | |
O | 61.567 | 63.646 | 60.440 | 61.007 | 59.764 | 60.797 | 62.562 | 65.073 | 61.711 | 61.529 |
Si | 10.764 | 11.855 | 15.941 | 16.566 | 12.313 | 12.986 | 13.904 | 14.814 | 0.804 | 0.600 |
Ti | n.d. | n.d. | 0.350 | 0.439 | 1.637 | 1.771 | n.d. | n.d. | 15.833 | 16.344 |
Al | 0.100 | 0.618 | 1.744 | 1.974 | 5.204 | 5.540 | 12.922 | 14.320 | 0.534 | 0.840 |
Mg | 12.844 | 17.564 | 8.382 | 8.833 | 7.560 | 7.860 | n.d. | n.d. | 1.321 | 2.518 |
Fe | 8.741 | 11.914 | 2.565 | 2.849 | 3.726 | 3.938 | n.d. | n.d. | 19.115 | 17.567 |
Ca | 0.207 | 0.366 | 7.920 | 8.869 | 5.190 | 5.470 | 5.161 | 6.562 | 0.275 | 0.215 |
Mn | 0.000 | 0.222 | 0.000 | 0.133 | 0.000 | 0.129 | n.d. | n.d. | 1.321 | 0.383 |
Na | n.d. | n.d. | 1.056 | 1.122 | 2.124 | 2.390 | 1.661 | 2.558 | n.d. | n.d. |
K | n.d. | n.d. | n.d. | n.d. | 0.524 | 0.584 | 0.000 | 0.295 | n.d. | n.d. |
Ca/(Ca + Na) | 0.67 | 0.79 | ||||||||
Mg/(Mg + Fe) | 0.52 | 0.67 | ||||||||
at % | Gabbro-Diorite | |||||||||
Olivine n = 3 | Pyroxene n = 4 | Biotite n = 3 | Plagioclase n = 4 | Ilmenite n = 2 | ||||||
Min | Max | Min | Max | Min | Max | Min | Max | Min | Max | |
O | 57.796 | 58.844 | 58.346 | 58.900 | 55.762 | 58.686 | 59.420 | 61.240 | 58.265 | 60.052 |
Si | 11.846 | 12.429 | 16.456 | 17.472 | 12.624 | 14.348 | 18.240 | 19.420 | 2.412 | 1.765 |
Ti | n.d. | n.d. | 0.450 | 0.571 | 1.801 | 2.563 | n.d. | n.d. | 8.199 | 16.736 |
Al | 0.416 | 1.429 | 1.614 | 2.020 | 6.975 | 7.953 | 11.050 | 12.140 | 1.611 | 0.656 |
Mg | 11.298 | 12.612 | 8.717 | 9.051 | 6.689 | 8.348 | n.d. | n.d. | 2.007 | 1.685 |
Fe | 14.933 | 16.937 | 3.237 | 3.617 | 5.626 | 6.764 | n.d. | n.d. | 26.594 | 18.319 |
Ca | 0.213 | 0.426 | 8.111 | 9.361 | n.d. | n.d. | 3.960 | 5.220 | 0.598 | 0.272 |
Mn | 0.375 | 0.446 | 0.130 | 0.160 | n.d. | n.d. | n.d. | n.d. | 0.314 | 0.514 |
Na | n.d. | n.d. | 0.982 | 1.132 | 1.005 | 1.639 | 1.633 | 2.530 | n.d. | n.d. |
K | n.d. | n.d. | n.d. | n.d. | 4.523 | 4.547 | 0.270 | 0.390 | n.d. | n.d. |
Ca/(Ca + Na) | 0.61 | 0.72 | ||||||||
Mg/(Mg + Fe) | 0.40 | 0.46 | ||||||||
n—number of analyses; n.d.—not determined. |
Cumulate Gabbro | Gabbro-Diorite | |||
---|---|---|---|---|
wt % | Stat Error | wt % | Stat Error | |
SiO2 | 42.30 | ±0.0344 | 49.00 | ±0.0356 |
TiO2 | 3.34 | ±0.0175 | 3.26 | ±0.0176 |
Al2O3 | 9.40 | ±0.0295 | 16.20 | ±0.0368 |
Fe2O3 | 15.50 | ±0.0133 | 11.20 | ±0.0115 |
P2O5 | 0.28 | ±0.00427 | 0.85 | ±0.00506 |
MnO | 0.40 | ±0.005 | 0.32 | ±0.005 |
MgO | 12.90 | ±0.0506 | 4.48 | ±0.0349 |
CaO | 12.70 | ±0.0428 | 8.33 | ±0.0375 |
BaO | 0.23 | ±0.013 | 0.28 | ±0.013 |
Na2O | 0.84 | ±0.0519 | 3.46 | ±0.0607 |
K2O | 0.19 | ±0.0345 | 1.42 | ±0.0395 |
LOI | 0.89 | - | 0.03 | - |
Total | 98.97 | - | 98.83 | - |
ppm | ppm | |||
S | 1900 | ±17.2 | 1500 | ±16.2 |
Rb | 9 | ±2.08 | 40 | ±2.24 |
Sr | 286 | ±2.57 | 748 | ±3.09 |
Y | 15 | ±2.30 | 34 | ±2.46 |
Zr | 80 | ±2.82 | 199 | ±3.14 |
Nb | 20 | ±2.52 | 62 | ±2.65 |
Th | 9 | ±2.94 | 10 | ±3.10 |
Cr | 478 | ±29.0 | 20 | ±25.4 |
Co | 198 | ±5.65 | 139 | ±5.02 |
Ni | 117 | ±4.12 | 7 | ±3.42 |
Cu | 62 | ±4.82 | 42 | ±4.88 |
Zn | 103 | ±6.07 | 108 | ±6.37 |
Ga | 14 | ±4.30 | 25 | ±4.67 |
As | 7 | ±4.29 | 8 | ±4.53 |
Pb | 0 | ±0 | 12 | ±17.2 |
Sn | 7 | ±27.3 | 0 | ±0 |
V | 479 | ±68.0 | 323 | ±68.0 |
U | 0 | ±0.209 | 2 | ±0.221 |
Cl | 43 | ±0.364 | 53 | ±0.359 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedro, J.; Araújo, A.A.; Moita, P.; Beltrame, M.; Lopes, L.; Chambel, A.; Berrezueta, E.; Carneiro, J. Mineral Carbonation of CO2 in Mafic Plutonic Rocks, I—Screening Criteria and Application to a Case Study in Southwest Portugal. Appl. Sci. 2020, 10, 4879. https://doi.org/10.3390/app10144879
Pedro J, Araújo AA, Moita P, Beltrame M, Lopes L, Chambel A, Berrezueta E, Carneiro J. Mineral Carbonation of CO2 in Mafic Plutonic Rocks, I—Screening Criteria and Application to a Case Study in Southwest Portugal. Applied Sciences. 2020; 10(14):4879. https://doi.org/10.3390/app10144879
Chicago/Turabian StylePedro, Jorge, António A. Araújo, Patrícia Moita, Massimo Beltrame, Luis Lopes, António Chambel, Edgar Berrezueta, and Júlio Carneiro. 2020. "Mineral Carbonation of CO2 in Mafic Plutonic Rocks, I—Screening Criteria and Application to a Case Study in Southwest Portugal" Applied Sciences 10, no. 14: 4879. https://doi.org/10.3390/app10144879
APA StylePedro, J., Araújo, A. A., Moita, P., Beltrame, M., Lopes, L., Chambel, A., Berrezueta, E., & Carneiro, J. (2020). Mineral Carbonation of CO2 in Mafic Plutonic Rocks, I—Screening Criteria and Application to a Case Study in Southwest Portugal. Applied Sciences, 10(14), 4879. https://doi.org/10.3390/app10144879