Digital Volume Correlation Applied to X-ray Micro-Tomography Images in Uniaxial Creep Tests on Anisotropic Clayey Rock
Abstract
:1. Introduction
2. X-ray Micro-Tomography and Digital Volume Correlation
2.1. X-ray Micro-Tomography
2.2. Digital Image and Volume Correlation
3. Experimental Program
3.1. In Situ Creep Test Device
3.2. Tested Material
3.3. Samples Preparation
4. Creep Strain Fields And Discussions
4.1. Evolution of Average Strains
4.2. Non-Uniform Strain Fields
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hicher, P.; Wahyudi, H.; Tessier, D. Microstructural analysis of strain localisation in clay. Comput. Geotech. 1994, 16, 205–222. [Google Scholar] [CrossRef]
- Tang, C.; Tang, A.M.; Cui, Y.J.; Delage, P.; Schroeder, C.; Shi, B. A study of the hydro-mechanical behaviour of compacted crushed argillite. Eng. Geol. 2011, 118, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Laurich, B.; Urai, J.L.; Desbois, G.; Vollmer, C.; Nussbaum, C. Microstructural evolution of an incipient fault zone in Opalinus Clay: Insights from an optical and electron microscopic study of ion-beam polished samples from the Main Fault in the Mt-Terri Underground Research Laboratory. J. Struct. Geol. 2014, 67, 107–128. [Google Scholar] [CrossRef]
- Robinet, J.; Sardini, P.; Siitari-Kauppi, M.; Prêt, D.; Yven, B. Upscaling the porosity of the Callovo-Oxfordian mudstone from the pore scale to the formation scale; insights from the 3H-PMMA autoradiography technique and SEM BSE imaging. Sediment. Geol. 2015, 321, 1–10. [Google Scholar] [CrossRef]
- Desbois, G.; Höhne, N.; Urai, J.L.; Bésuelle, P.; Viggiani, G. Deformation in cemented mudrock (Callovo-Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity: Insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy. Solid Earth 2017, 8, 291. [Google Scholar] [CrossRef] [Green Version]
- Viggiani, G.; Lenoir, N.; Bésuelle, P.; Michiel, M.; Marello, S.; Desrues, J.; Kretzschmer, M. X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression. Comptes Rendus Mécanique 2004, 332, 819–826. [Google Scholar] [CrossRef]
- Robinet, J.C. Minéralogie, Porosité et Diffusion des Solutés dans L’argilite du Callovo-Oxfordien de Bure (Meuse, Haute-Marne, France) de L’échelle Centimétrique à Micrométrique. Ph.D. Thesis, University of Poitiers, Poitiers, France, 2008. [Google Scholar]
- Buffiere, J.Y.; Maire, E.; Adrien, J.; Masse, J.P.; Boller, E. In situ experiments with X ray tomography: An attractive tool for experimental mechanics. Exp. Mech. 2010, 50, 289–305. [Google Scholar] [CrossRef]
- Bornert, M.; Vales, F.; Gharbi, H.; Nguyen Minh, D. Multiscale full-field strain measurements for micromechanical investigations of the hydromechanical behaviour of clayey rocks. Strain 2010, 46, 33–46. [Google Scholar] [CrossRef]
- Viggiani, G.; Besuelle, P.; Desrues, J. X-ray Micro Tomography as a Tool for Studying Localized Damage/deformation in Clay Rock; Technical Report: NEA-RWM-CLAYCLUB–2013-1; Nuclear Energy Agency of the OECD (NEA): Paris, France, 2013.
- Chu, T.; Ranson, W.; Sutton, M.A. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 1985, 25, 232–244. [Google Scholar] [CrossRef]
- Bay, B.K.; Smith, T.S.; Fyhrie, D.P.; Saad, M. Digital volume correlation: Three-dimensional strain mapping using X-ray tomography. Exp. Mech. 1999, 39, 217–226. [Google Scholar] [CrossRef]
- Gasc-Barbier, M.; Chanchole, S.; Bérest, P. Creep behavior of Bure clayey rock. Appl. Clay Sci. 2004, 26, 449–458. [Google Scholar] [CrossRef]
- Fabre, G.; Pellet, F. Creep and time-dependent damage in argillaceous rocks. Int. J. Rock Mech. Min. Sci. 2006, 43, 950–960. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, J.; Liu, T.; Xie, S.; Conil, N. Gas permeability evolution mechanism during creep of a low permeable claystone. Appl. Clay Sci. 2016, 129, 47–53. [Google Scholar] [CrossRef]
- Armand, G.; Conil, N.; Talandier, J.; Seyedi, D.M. Fundamental aspects of the hydromechanical behaviour of Callovo-Oxfordian claystone: From experimental studies to model calibration and validation. Comput. Geotech. 2017, 85, 277–286. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, J.; Xie, S.; Conil, N.; Zha, W. Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression. Int. J. Rock Mech. Min. Sci. 2018, 103, 68–76. [Google Scholar] [CrossRef]
- Guéry, A.A.C.; Cormery, F.; Shao, J.F.; Kondo, D. A comparative micromechanical analysis of the effective properties of a geomaterial: Effect of mineralogical compositions. Comput. Geotech. 2010, 37, 585–593. [Google Scholar] [CrossRef]
- Amadei, B. Importance of anisotropy when estimating and measuring in situ stresses in rock. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1996, 33, 293–325. [Google Scholar] [CrossRef]
- Niandou, H.; Shao, J.F.; Henry, J.P.; Fourmaintraux, D. Laboratory investigation of the mechanical behaviour of Tournemire shale. Int. J. Rock Mech. Min. Sci. 1997, 34, 3–16. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, S.; Hu, D.; Shao, J.F.; Gatmiri, B. Effect of water content and structural anisotropy on mechanical property of claystone. Appl. Clay Sci. 2012, 69, 79–86. [Google Scholar] [CrossRef]
- Yang, D.; Chanchole, S.; Valli, P.; Chen, L. Study of the anisotropic properties of argillite under moisture and mechanical loads. Rock Mech. Rock Eng. 2013, 46, 247–257. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, S.; Shao, J.F.; Conil, N. Effects of deviatoric stress and structural anisotropy on compressive creep behavior of a clayey rock. Appl. Clay Sci. 2015, 114, 491–496. [Google Scholar] [CrossRef]
- Togashi, Y.; Kikumoto, M.; Tani, K. An experimental method to determine the elastic properties of transversely isotropic rocks by a single triaxial test. Rock Mech. Rock Eng. 2017, 50, 1–15. [Google Scholar] [CrossRef]
- Zhang, C.; Armand, G.; Conil, N.; Laurich, B. Investigation on anisotropy of mechanical properties of Callovo-Oxfordian claystone. Eng. Geol. 2019, 251, 128–145. [Google Scholar] [CrossRef]
- Bésuelle, P.; Viggiani, G.; Lenoir, N.; Desrues, J.; Bornert, M. X-Ray Micro CT for Studying Strain Localization in Clay Rocks Under Triaxial Compression; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 118, pp. 35–52. [Google Scholar]
- Lenoir, N.; Bornert, M.; Desrues, J.; Bésuelle, P.; Viggiani, G. Volumetric digital image correlation applied to X-ray microtomography images from triaxial compression tests on argillaceous rock. Strain 2007, 43, 193–205. [Google Scholar] [CrossRef]
- Wang, L.L.; Bornert, M.; Heripre, E.; Chanchole, S.; Pouya, A.; Halphen, B. The mechanisms of deformation and damage of mudstones: A micro-scale study combining ESEM and DIC. Rock Mech. Rock Eng. 2015, 48, 1913–1926. [Google Scholar] [CrossRef]
- Stavropoulou, E.; Andò, E.; Roubin, E.; Lenoir, N.; Tengattini, A.; Briffaut, M.; Bésuelle, P. Dynamics of water absorption in Callovo-Oxfordian Claystone revealed with multimodal X-ray and neutron tomography. Front. Earth Sci. 2020, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Kak, A.C.; Slaney, M. Principles of Computerized Tomographic Imaging; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2001. [Google Scholar]
- Attix, F.H. Introduction to Radiological Physics and Radiation Dosimetry; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Limodin, N.; Rougelot, T.; Hauss, G. ISIS4D-In Situ Innovative Set-Ups under X-ray Microtomography. 2013. Available online: http://isis4d.univ-lille1.fr/wordpress/ (accessed on 13 July 2020).
- Sutton, M.; Wolters, W.; Peters, W.; Ranson, W.; McNeill, S. Determination of displacements using an improved digital correlation method. Image Vis. Comput. 1983, 1, 133–139. [Google Scholar] [CrossRef]
- Buljac, A.; Jailin, C.; Mendoza, A.; Neggers, J.; Taillandier-Thomas, T.; Bouterf, A.; Smaniotto, B.; Hild, F.; Roux, S. Digital volume correlation: Review of progress and challenges. Exp. Mech. 2018, 58, 661–708. [Google Scholar] [CrossRef] [Green Version]
- Seghir, R.; Witz, J.F.; Courdert, S. YaDICs-Digital Image Correlation 2/3D Software. 2014. Available online: http://yadics.univ-lille1.fr/wordpress/ (accessed on 13 July 2020).
- Dahdah, N.; Limodin, N.; El Bartali, A.; Witz, J.F.; Seghir, R.; Charkaluk, E.; Buffiere, J.Y. Damage Investigation in A319 Aluminium Alloy by X-ray Tomography and Digital Volume Correlation during In Situ High-Temperature Fatigue Tests. Strain 2016, 52, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Besnard, G.; Hild, F.; Roux, S. “Finite-element” displacement fields analysis from digital images: Application to Portevin–Le Châtelier bands. Exp. Mech. 2006, 46, 789–803. [Google Scholar] [CrossRef] [Green Version]
- Avril, S.; Bonnet, M.; Bretelle, A.S.; Grédiac, M.; Hild, F.; Ienny, P.; Latourte, F.; Lemosse, D.; Pagano, S.; Pagnacco, E.; et al. Overview of identification methods of mechanical parameters based on full-field measurements. Exp. Mech. 2008, 48, 381. [Google Scholar] [CrossRef] [Green Version]
- Witz, J.F.; Réthoré, J.; Hosdez, J. Regularization Techniques for Finite Element DIC. In International Digital Imaging Correlation Society; Springer: Berlin/Heidelberg, Germany, 2017; pp. 137–140. [Google Scholar]
- Hosdez, J.; Witz, J.; Martel, C.; Limodin, N.; Najjar, D.; Charkaluk, E.; Osmond, P.; Szmytka, F. Fatigue crack growth law identification by Digital Image Correlation and electrical potential method for ductile cast iron. Eng. Fract. Mech. 2017, 182, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Limodin, N.; El Bartali, A.; Witz, J.F.; Seghir, R.; Buffiere, J.Y.; Charkaluk, E. Influence of pores on crack initiation in monotonic tensile and cyclic loadings in lost foam casting A319 alloy by using 3D in-situ analysis. Mater. Sci. Eng. 2016, 673, 362–372. [Google Scholar] [CrossRef]
- Li, Z.; Limodin, N.; Tandjaoui, A.; Quaegebeur, P.; Witz, J.F.; Balloy, D. Influence of Fe content on the damage mechanism in A319 aluminum alloy: Tensile tests and digital image correlation. Eng. Fract. Mech. 2017, 183, 94–108. [Google Scholar] [CrossRef]
- Shi, H.; Hosdez, J.; Rougelot, T.; Xie, S.; Shao, J.; Talandier, J. Analysis of local creep strain field and cracking process in claystone by X-ray micro-tomography and digital volume correlation. Rock Mech. Rock Eng. 2020. Submitted. [Google Scholar]
- Amann, F.; Kaiser, P.; Button, E.A. Experimental Study of Brittle Behavior of Clay Shale in Rapid Triaxial Compression. Rock Mech. Rock Eng. 2012, 45, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Robinet, J.C.; Sardini, P.; Coelho, D.; Parneix, J.C.; Pret, D.; Sammartino, S.; Boller, E.; Altmann, S. Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo-Oxfordian mudstone (Bure, France). Water Resour. Res. 2012, 48, W05554. [Google Scholar] [CrossRef]
- Bennett, K.; Berla, L.; Nix, W.; Borja, R. Instrumented nanoindentation and 3D mechanistic modeling of a shale at multiple scales. Acta Geotech. 2015, 10, 1–14. [Google Scholar] [CrossRef]
- Abedi, S.; Slim, M.; Hofmann, R.; Bryndzia, T.; Ulm, F. Nanochemo-mechanical signature of organic-rich shales: A coupled indentation-EDX analysis. Acta Geotech. 2016, 11, 559–572. [Google Scholar] [CrossRef] [Green Version]
- Aplin, A.C.; Yang, Y.; Hansen, S. Assessment of β the compression coefficient of mudstones and its relationship with detailed lithology. Mar. Pet. Geol. 1995, 12, 955–963. [Google Scholar] [CrossRef]
- Conil, N.; Talandier, J.; Djizanne, H.; de La Vaissière, R.; Righini-Waz, C.; Auvray, C.; Morlot, C.; Armand, G. How rock samples can be representative of in situ condition: A case study of Callovo-Oxfordian claystones. J. Rock Mech. Geotech. Eng. 2018, 10, 613–623. [Google Scholar] [CrossRef]
- Liu, Z.; Xie, S.; Shao, J.; Conil, N. Multi-step triaxial compressive creep behaviour and induced gas permeability change of clay-rich rock. Géotechnique 2018, 68, 281–289. [Google Scholar] [CrossRef]
Rock Core | Direction | Diameter (mm) | Height (mm) | Creep Steps | Failure Stress / (MPa) | Stress Ratios for Creep Tests | Axial Elastic Modulus E/(GPa) | Axial Poisson’s Ratio |
---|---|---|---|---|---|---|---|---|
EST58125 | ‖ | 4 | ∼10.0 | 0.18–0.20 | ||||
EST58125 | ⃫ | 3 | ∼8.0 | 0.15–0.24 | ||||
EST58125 | ⊥ | 4 | ∼6.3 | 0.26–0.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Hosdez, J.; Rougelot, T.; Xie, S.; Shao, J.; Talandier, J.; Lacidogna, G. Digital Volume Correlation Applied to X-ray Micro-Tomography Images in Uniaxial Creep Tests on Anisotropic Clayey Rock. Appl. Sci. 2020, 10, 4898. https://doi.org/10.3390/app10144898
Shi H, Hosdez J, Rougelot T, Xie S, Shao J, Talandier J, Lacidogna G. Digital Volume Correlation Applied to X-ray Micro-Tomography Images in Uniaxial Creep Tests on Anisotropic Clayey Rock. Applied Sciences. 2020; 10(14):4898. https://doi.org/10.3390/app10144898
Chicago/Turabian StyleShi, Hailing, Jerome Hosdez, Thomas Rougelot, Shouyi Xie, Jianfu Shao, Jean Talandier, and Giuseppe Lacidogna. 2020. "Digital Volume Correlation Applied to X-ray Micro-Tomography Images in Uniaxial Creep Tests on Anisotropic Clayey Rock" Applied Sciences 10, no. 14: 4898. https://doi.org/10.3390/app10144898
APA StyleShi, H., Hosdez, J., Rougelot, T., Xie, S., Shao, J., Talandier, J., & Lacidogna, G. (2020). Digital Volume Correlation Applied to X-ray Micro-Tomography Images in Uniaxial Creep Tests on Anisotropic Clayey Rock. Applied Sciences, 10(14), 4898. https://doi.org/10.3390/app10144898