Effects of Vitamin Forms and Levels on Vitamin Bioavailability and Growth Performance in Piglets
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Sample Collection
2.2. Vitamin Analysis
2.3. Pharmacokinetic Calculation
2.4. Statistical Analysis
3. Results
3.1. Effect of the Microencapsulation on the Pharmacokinetics of Vitamin for Pigs
3.2. Effects of Vitamin Form and Level on the Growth Performance of Piglets
3.3. Effects of Vitamin Form and Level on Plasma Vitamin Concentration for Piglets
4. Discussion
4.1. Plasma Kinetic Behavior of Different Forms of Vitamin A
4.2. Plasma Kinetic Behavior of Different Forms of Vitamin E
4.3. Influence of Vitamin Form and Vitamin Level on the Growth Performance of Piglets
4.4. Influence of Vitamin Form and Vitamin Level on Plasma Vitamins Concentration
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bansode, S.S.; Banarjee, S.K.; Gaikwad, D.D.; Jadhav, S.L.; Thorat, R.M. Microencapsulation: A review. Int. J. Pharm. Sci. Rev. Res. 2010, 1, 38–43. [Google Scholar]
- Lam, P.L.; Gambari, R. Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J. Control. Release 2014, 178, 25–45. [Google Scholar] [CrossRef]
- Gonçalves, A.; Estevinho, B.N.; Rocha, F. Microencapsulation of vitamin A: A review. Trends Food Sci. Technol. 2016, 51, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Yang, P.; Wang, H.; Zhu, M.; Ma, Y. Evaluation of extrusion temperatures, pelleting parameters, and vitamin forms on vitamin stability in feed. Animals 2020, 10, 894. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Wang, H.; Zhu, M.; Ma, Y. Effects of choline chloride, copper sulfate and zinc oxide on long-term stabilization of microencapsulated vitamins in premixes for weanling piglets. Animals 2019, 9, 1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teleki, A.; Hitzfeld, A.; Eggersdorfer, M. 100 years of vitamins: The science of formulation is the key to functionality. Kona Powder Part. J. 2013, 30, 144–163. [Google Scholar] [CrossRef] [Green Version]
- Rejinold, N.S.; Kim, H.K.; Isakovic, A.F.; Gater, D.L.; Kim, Y.C. Therapeutic vitamin delivery: Chemical and physical methods with future directions. J. Control. Release 2019, 298, 83–98. [Google Scholar] [CrossRef]
- Combs, G.F., Jr. The Vitamins—Fundamental Aspects in Nutrition and Health, 4th ed.; Academic Press: Cambridge, MA, USA, 2016; p. 1570. [Google Scholar]
- Cappai, M.G.; Lunesu, M.G.A.; Accioni, F.; Liscia, M.; Pusceddu, M.; Burrai, L.; Nieddu, M.; Dimauro, C.; Boatto, G.; Pinna, W. Blood serum retinol levels in Asinara white donkeys reflect albinism-induced metabolic adaptation to photoperiod at Mediterranean latitudes. Ecol. Evol. 2017, 7, 390–398. [Google Scholar] [CrossRef]
- Kim, B.G.; Lindemann, M.D. An overview of mineral and vitamin requirements of swine in the national research council (1944 to 1998) publications. Prof. Anim. Sci. 2007, 23, 584–596. [Google Scholar] [CrossRef]
- Stahly, T.S.; Williams, N.H.; Lutz, T.R.; Ewan, R.C.; Swenson, S.G. Dietary B vitamin needs of strains of pigs with high and moderate lean growth. J. Anim. Sci. 2007, 85, 188–195. [Google Scholar] [CrossRef]
- Van Kempen, T.A.T.G.; Reijersen, M.H.; De Bruijn, C.; De Smet, S.; Michiels, J.; Traber, M.G.; Lauridsen, C. Vitamin E plasma kinetics in swine show low bioavailability and short half-life of all-rac-α-tocopheryl acetate. J. Anim. Sci. 2016, 94, 4188–4195. [Google Scholar] [CrossRef] [PubMed]
- DSM Vitamin Supplementation Guidelines 2016 for Animal Nutrition. Available online: https://www.dsm.com/markets/anh/en_US/generic/download-registration-vitamin-supplementation-guidelines-in-animal-nutrition-2016.html?assetPath=/content/dam/dsm/anh/en_US/documents/Vitamin_Supp_Guidelines.pdf (accessed on 8 June 2020).
- Trouw Nutrition China Vitamins and Minerals Recommendation. Available online: https://www.trouwnutrition.com.cn/Products_overview/Service-Overview/Technical-article/Recommendatiom/ (accessed on 8 June 2020).
- National Research Council. Nutrient Requirements of Swine, 11th ed.; National Research Council of the National Academies: Washington, DC, USA, 2012. [Google Scholar]
- Blomhoff, R.U.N.E.; Green, M.H.; Green, J.B.; Berg, T.R.O.N.D.; Norum, K.R. Vitamin A metabolism: New perspectives on absorption, transport, and storage. Physiol. Rev. 1991, 71, 951–990. [Google Scholar] [CrossRef] [PubMed]
- Reinersdorff, D.V.; Bush, E.; Liberato, D.J. 1996. Plasma kinetics of vitamin A in humans after a single oral dose of [8,9,19-13C] retinyl palmitate. J. Lipid Res. 1996, 37, 1875–1885. [Google Scholar]
- Raila, J.; Radon, R.; Trüpschuch, A.; Schweigert, F.J. Retinol and retinyl ester responses in the blood plasma and urine of dogs after a single oral dose of vitamin A. J. Nutr. 2002, 132, 1673S–1675S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, Y.D.; Ma, J.Y.; Monegue, J.S.; Monegue, H.J.; Stuart, R.L.; Lindemann, M.D. Temporal plasma vitamin concentrations are altered by fat-soluble vitamin administration in suckling pigs. J. Anim. Sci. 2015, 93, 5273–5282. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.D.; Rotering, M.J.; Isensee, P.K.; Rinholen, K.A.; Boston-Denton, C.J.; Kelley, P.G.; Stuart, R.L. Distribution of injected fat-soluble vitamins in plasma and tissues of nursery pigs. Asian Australas. J. Anim. Sci. 2020, in press. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Guo, X.; Feng, M.; Mao, N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int. J Pharm. 2013, 458, 305–314. [Google Scholar] [CrossRef]
- Estevinho, B.N.; Rocha, F.; Santos, L.; Alves, A. Microencapsulation with chitosan by spray drying for industry applications—A review. Trends Food Sci. Technol. 2013, 31, 138–155. [Google Scholar] [CrossRef]
- Isabel, B.; Daza, A.; Ayuso, M.; Óvilo, C.; Fernández, A.; Nu, Y.; Rey, A.I. Effects of dietary vitamin A supplementation or restriction and its timing on retinol and α-tocopherol accumulation and gene expression in heavy pigs. Anim. Feed Sci. Technol. 2015, 202, 62–74. [Google Scholar]
- Van Kempen, T.A.T.G.; de Bruijn, C.; Reijersen, M.H.; Traber, M.G. Water-soluble all-rac-α-tocopheryl-phosphate and fat-soluble all-rac-α-tocopheryl-acetate are comparable vitamin E sources for swine. J. Anim. Sci. 2018, 96, 3330–3336. [Google Scholar] [CrossRef]
- Traber, M.G.; Ramakrishnan, R.; Kayden, H.J. Human plasma vitamin E kinetics demonstrate rapid recycling of plasma RRR- α-tocopherol. Proc. Natl. Acad. Sci. USA 1994, 91, 10005–10008. [Google Scholar] [CrossRef] [Green Version]
- Humans, R.; Chuang, J.C.; Matel, H.D.; Nambiar, K.P.; Kim, S.; Fadel, J.G.; Holstege, D.M.; Clifford, A.J. Quantitation of [5-14CH3]-(2R, 4’R, 8’R)-a-tocopherol in humans. J. Nutr. 2011, 141, 1482–1488. [Google Scholar]
- Weiser, H.; Riss, G.; Kormann, A.W. Biodiscrimination of the eight α-tocopherol stereoisomers results in preferential accumulation of the four 2R forms in tissues and plasma of rats. J. Nutr. 1996, 126, 2539–2549. [Google Scholar] [CrossRef] [Green Version]
- Leonard, S.W.; Paterson, E.; Atkinson, J.K.; Ramakrishnan, R.; Cross, C.E.; Traber, M.G. Studies in humans using deuterium-labeled α- and γ-tocopherols demonstrate faster plasma γ-tocopherol disappearance and greater γ-metabolite production. Free Radic. Biol. Med. 2005, 38, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Prévéraud, D.P.; Desmarchelier, C.; Rouffineau, F.; Devillard, E.; Borel, P. A meta-analysis to assess the effect of the consumption of dietary fat on α-tocopherol blood and tissue concentration in pigs. J. Anim. Sci. 2015, 93, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Bontempo, V.; Cheli, F.; Carli, S.; Rossi, C.S.; Dell’Orto, V. Relative bioavailability of vitamin E in dairy cows following intraruminal administration of three different preparations of DL-α-tocopheryl acetate. Vet. Res. 1997, 28, 517–524. [Google Scholar] [PubMed]
- Lindemann, M.D.; Cromwell, G.L.; Monegue, H.J. Effects of inadequate and high levels of vitamin fortification on performance of weanling pigs. J. Anim. Sci. 1995, 73 (Suppl. 1), 16. [Google Scholar]
- Cho, J.H.; Lu, N.; Lindemann, M.D. Effects of vitamin supplementation on growth performance and carcass characteristics in pigs. Livest. Sci. 2017, 204, 25–32. [Google Scholar] [CrossRef]
- Mahan, D.C.; Carter, S.D.; Cline, T.R.; Hill, G.M.; Kim, S.W.; Miller, P.S.; Nelssen, J.L.; Stein, H.H.; Veum, T.L.; Cromwell, G.L.; et al. Evaluating the effects of supplemental B vitamins in practical swine diets during the starter and grower-finisher periods—A regional study. J. Anim. Sci. 2007, 85, 2190–2197. [Google Scholar]
- Guay, F.; Matte, J.J.; Girard, C.L.; Palin, M.F.; Giguère, A.; Laforest, J.P. Effects of folic acid and vitamin B12 supplements on folate and homocysteine metabolism in pigs during early pregnancy. Br. J. Nutr. 2002, 88, 253–263. [Google Scholar] [CrossRef] [Green Version]
- Moreira, I.; Mahan, D.C. Effect of dietary levels of vitamin E (all-rac-tocopheryl acetate) with or without added fat on weanling pig performance and tissue α-tocopherol concentration. J. Anim. Sci. 2002, 80, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Audet, I.; Laforest, J.P.; Martineau, G.P.; Matte, J.J. Effect of vitamin supplements on some aspects of performance, vitamin status, and semen quality in boars. J. Anim. Sci. 2004, 82, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Molina, V.; Medici, M.; Taranto, M.P.; De Valdez, G.F. Effects of maternal vitamin B12 deficiency from end of gestation to weaning on the growth and haematological and immunological parameters in mouse dams and offspring. Arch. Anim. Nutr. 2008, 62, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Matte, J.J.; Guay, F.; le Floc’h, N.; Girard, C.L. Bioavailability of dietary cyanocobalamin (vitamin B12) in growing pigs. J. Anim. Sci. 2010, 88, 3936–3944. [Google Scholar] [CrossRef] [Green Version]
- Demirkaya-Miloglu, F.; Kadioglu, Y.; Bilici, M.; Tekin, S.B.; Ozturk, M. Levels of vitamin K3 in healthy volunteers and in patients with different types of stomach cancer after a single vitamin K3 administration. J. Liq. Chromatogr. Relat. Technol. 2013, 36, 1467–1477. [Google Scholar] [CrossRef]
- Chen, Y.F.; Huang, C.F.; Liu, L.; Lai, C.H.; Wang, F.L. Concentration of vitamins in the 13 feed ingredients commonly used in pig diets. Anim. Feed Sci. Technol. 2019, 247, 1–8. [Google Scholar] [CrossRef]
- Traber, M.G.; Atkinson, J. Vitamin E, antioxidant and nothing more. Free Radic. Biol. Med. 2007, 43, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Niki, E.; Traber, M.G. A history of vitamin E. Ann. Nutr. Metab. 2012, 61, 207–212. [Google Scholar] [CrossRef]
- Shahrook, S.; Ota, E.; Hanada, N.; Sawada, K.; Mori, R. Vitamin K supplementation during pregnancy for improving outcomes: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Booth, S.L. Roles for vitamin K beyond coagulation. Annu. Rev. Nutr. 2009, 29, 89–110. [Google Scholar] [CrossRef]
- Matte, J.J.; LeFloc’h, N.; Primot, Y.; Lessard, M. Interaction between dietary tryptophan and pyridoxine on tryptophan metabolism, immune responses and growth performance in post-weaning pigs. Anim. Feed Sci. Technol. 2011, 170, 256–264. [Google Scholar] [CrossRef]
- Giguère, A.; Girard, C.L.; Matte, J.J. Methionine, folic acid and vitamin B12 in growing-finishing pigs: Impact on growth performance and meat quality. Arch. Anim. Nutr. 2008, 62, 193–206. [Google Scholar] [CrossRef] [PubMed]
Items | Amount, % |
---|---|
Corn | 68.61 |
Soybean meal | 24.00 |
Soybean oil | 3.02 |
Monocalcium phosphate | 1.60 |
Limestone | 0.80 |
Salt | 0.30 |
L-lysine HCL | 0.53 |
DL-methionine | 0.13 |
L-threonine | 0.24 |
Tryptophan | 0.04 |
L-valine | 0.20 |
Trace mineral premix 1 | 0.50 |
Vitamin premix without vitamins A and E 2 | 0.03 |
Total | 100.00 |
Calculated nutritional values | |
Metabolized energy (Kcal/kg) | 3452.39 |
Crude protein | 17.30 |
SID Lysine | 1.23 |
SID Methionine | 0.36 |
SID Threonine | 0.73 |
SID Tryptophan | 0.20 |
SID Valine | 0.78 |
Total Calcium | 0.74 |
STTD Phosphorus | 0.41 |
Item | Non-Microencapsulated Vitamins | Microencapsulated Vitamins | ||||
---|---|---|---|---|---|---|
NRC | 75% CRV | 100% CRV | NRC | 75% CRV | 100% CRV | |
Vitamin, unit/kg | ||||||
Vitamin A, IU | 5,833,333.33 | 25,000,000.00 | 33,333,333.33 | 5,833,333.33 | 25,000,000.00 | 33,333,333.33 |
Vitamin D3, IU | 666,666.67 | 4,500,000.00 | 6,000,000.00 | 666,666.67 | 4,500,000.00 | 6,000,000.00 |
Vitamin E, IU | 36.67 | 175.00 | 233.33 | 36.67 | 175.00 | 233.33 |
Vitamin K3, mg | 1.67 | 15.00 | 20.00 | 1.67 | 15.00 | 20.00 |
Biotin, mg | 0.17 | 0.50 | 0.67 | 0.17 | 0.50 | 0.67 |
Folic acid, mg | 1.00 | 3.75 | 5.00 | 1.00 | 3.75 | 5.00 |
Niacin, mg | 100.00 | 87.50 | 116.67 | 100.00 | 87.50 | 116.67 |
Pantothenate, mg | 30.00 | 62.50 | 83.33 | 30.00 | 62.50 | 83.33 |
Thiamine, mg | 3.33 | 7.50 | 10.00 | 3.33 | 7.50 | 10.00 |
Riboflavin, mg | 10.00 | 25.00 | 33.33 | 10.00 | 25.00 | 33.33 |
Vitamin B6, mg | 10.00 | 15.00 | 20.00 | 10.00 | 15.00 | 20.00 |
Vitamin B12, μg | 50.00 | 97.50 | 130.00 | 50.00 | 97.50 | 130.00 |
Items | Percent |
---|---|
Corn | 66.00 |
Soybean meal | 26.00 |
Soybean oil | 3.18 |
Monocalcium phosphate | 1.62 |
Limestone | 0.92 |
Salt | 0.20 |
L-lysine HCL | 0.76 |
D, L-methionine | 0.15 |
L-threonine | 0.27 |
Tryptophan | 0.05 |
L-valine | 0.25 |
Choline chloride | 0.10 |
Trace mineral premix 1 | 0.50 |
Vitamin premix 2 | 0.03 |
Total | 100.00 |
Calculated nutritional values | |
Metabolized energy (Kcal/kg) | 3455.16 |
Crude protein | 18.25 |
SID Lysine | 1.35 |
SID Methionine | 0.39 |
SID Threonine | 0.79 |
SID Tryptophan | 0.22 |
SID Valine | 0.86 |
Total Calcium | 0.79 |
STTD Phosphorus | 0.41 |
Items 1 | Treatments 2 | SEM | p-Value | |
---|---|---|---|---|
M | NM | |||
Retinol | ||||
AUC, h × ng/mL | 2636.31 | 2934.16 | 337.12 | 0.588 |
ta1/2, h | 4.17 | 3.38 | 0.83 | 0.557 |
tel1/2, h | 14.38 | 18.04 | 2.25 | 0.335 |
Tmax, h | 10.10 | 9.81 | 1.16 | 0.877 |
Cmax, ng/mL | 78.22 | 76.78 | 7.15 | 0.901 |
α-tocopherol | ||||
AUC, h × μg/mL | 63.55 | 39.43 | 6.13 | 0.050 |
ta1/2, h | 4.51 | 3.99 | 0.45 | 0.460 |
tel1/2, h | 19.63 | 27.90 | 4.50 | 0.263 |
Tmax, h | 12.38 | 12.68 | 0.99 | 0.843 |
Cmax, μg/mL | 1.45 | 0.71 | 0.02 | <0.001 |
Form | Non-Microencapsulated | Microencapsulated | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Level | CRV | CRV | Form | Level | Form × Level | |||||
NRC | 75% | 100% | NRC | 75% | 100% | |||||
0–14 d | ||||||||||
ADG, g/d | 284 | 271 | 277 | 275 | 277 | 297 | 6.32 | 0.295 | 0.129 | 0.117 |
ADFI, g/d | 430 | 417 | 411 | 420 | 430 | 423 | 9.37 | 0.674 | 0.552 | 0.436 |
G:F | 0.66 | 0.65 | 0.67 | 0.65 | 0.64 | 0.70 | 0.04 | 0.766 | 0.103 | 0.577 |
14–28 d | ||||||||||
ADG, g/d | 372 b,c | 393 a,b,c | 425 a | 366 c | 413 a,b | 430 a | 9.57 | 0.433 | <0.001 | 0.37 |
ADFI, g/d | 714 | 700 | 726 | 733 | 706 | 713 | 13.00 | 0.708 | 0.258 | 0.489 |
G:F | 0.52 ab | 0.56 bc | 0.58 c | 0.50 a | 0.59 c | 0.60 c | 0.03 | 0.606 | <0.001 | 0.039 |
0–28 d | ||||||||||
ADG, g/d | 321 c | 327 b,c | 351 a,b | 320 c | 345 a,b,c | 364 a | 6.12 | 0.058 | <0.001 | 0.296 |
ADFI, g/d | 574 | 558 | 568 | 577 | 568 | 568 | 8.52 | 0.559 | 0.382 | 0.833 |
G:F | 0.56 a | 0.58 a,b | 0.62 bc | 0.56 a | 0.61 b,c | 0.64 c | 0.03 | 0.099 | <0.001 | 0.277 |
Form | Non-Microencapsulated | Microencapsulated | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Level | CRV | CRV | Form | Level | Form × Level | |||||
NRC | 75% | 100% | NRC | 75% | 100% | |||||
Retinol, ng/mL | 105.13 | 116.10 | 102.18 | 157.90 | 142.97 | 133.60 | 26.00 | 0.078 | 0.538 | 0.691 |
25(OH)D3, ng/mL | 26.48 | 21.75 | 25.12 | 22.89 | 22.11 | 21.36 | 2.08 | 0.110 | 0.339 | 0.420 |
α-tocopherol, μg/mL | 0.57 | 0.59 | 0.51 | 0.55 | 0.58 | 0.51 | 0.15 | 0.945 | 0.874 | 0.999 |
Menadione, ng/mL | 29.23 | 31.71 | 29.64 | 27.52 | 32.67 | 28.37 | 2.80 | 0.773 | 0.375 | 0.879 |
Thiamine, ng/mL | 15.12 | 11.34 | 15.41 | 14.31 | 14.91 | 12.61 | 3.23 | 0.997 | 0.887 | 0.614 |
Riboflavin, ng/mL | 2.68 | 1.47 | 2.70 | 2.16 | 2.46 | 1.31 | 0.93 | 0.686 | 0.865 | 0.456 |
Nicotinamide, ng/mL | 31.60 | 32.60 | 32.60 | 33.04 | 33.64 | 32.94 | 3.95 | 0.907 | 0.955 | 0.931 |
Pantothenate, ng/mL | 7.99 | 7.05 | 7.17 | 7.59 | 7.34 | 7.87 | 1.35 | 0.862 | 0.909 | 0.919 |
Vitamin B6, ng/mL | ND | ND | ND | ND | ND | ND | - | - | - | - |
Biotin, ng/mL | 2.35 | 0.93 | 1.88 | 0.88 | 1.32 | 1.12 | 0.50 | 0.159 | 0.605 | 0.218 |
Folic acid, ng/mL | 8.95 | 8.62 | 8.97 | 9.87 | 9.23 | 8.19 | 1.61 | 0.851 | 0.875 | 0.854 |
Vitamin B12, pmol/L | 137.87 | 139.71 | 132.88 | 130.14 | 137.51 | 134.88 | 11.89 | 0.790 | 0.903 | 0.920 |
Form | Non-Microencapsulated | Microencapsulated | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Level | CRV | CRV | Form | Level | Form × Level | |||||
NRC | 75% | 100% | NRC | 75% | 100% | |||||
Retinol, ng/mL | 161.13 | 182.87 | 203.41 | 177.49 | 223.48 | 212.61 | 27.64 | 0.336 | 0.826 | 0.331 |
25(OH)D3, ng/mL | 30.37 | 30.54 | 29.14 | 26.99 | 25.69 | 31.91 | 2.52 | 0.394 | 0.619 | 0.312 |
α-tocopherol, μg/mL | 0.49 | 0.64 | 0.60 | 0.44 | 0.58 | 0.61 | 0.07 | 0.613 | 0.077 | 0.884 |
Menadione, ng/mL | 6.33 b | 10.41 a | 10.70 a | 7.31 b | 10.42 a | 11.84 a | 0.64 | 0.201 | <0.001 | 0.644 |
Thiamine, ng/mL | 52.53 | 52.57 | 50.83 | 53.43 | 53.57 | 55.50 | 1.56 | 0.110 | 0.993 | 0.413 |
Riboflavin, ng/mL | 30.90 | 33.16 | 30.47 | 31.78 | 32.60 | 30.83 | 3.86 | 0.943 | 0.842 | 0.982 |
Nicotinamide, ng/mL | 36.93 | 36.59 | 36.70 | 36.53 | 36.43 | 36.09 | 0.24 | 0.073 | 0.405 | 0.655 |
Pantothenate, ng/mL | 98.43 b | 141.67 a | 136.33 a | 99.23 b | 137.33 a | 142.33 a | 12.26 | 0.833 | <0.001 | 0.560 |
Vitamin B6, ng/mL | 6.10 | 6.90 | 6.90 | 6.92 | 6.59 | 6.24 | 1.03 | 0.951 | 0.972 | 0.758 |
Biotin, ng/mL | 6.50 | 6.44 | 6.48 | 6.27 | 6.50 | 6.33 | 0.18 | 0.476 | 0.881 | 0.704 |
Folic acid, ng/mL | 13.57 | 13.48 | 13.07 | 13.67 | 13.49 | 13.63 | 0.20 | 0.192 | 0.436 | 0.359 |
Vitamin B12, pmol/L | 145.62 | 145.60 | 147.52 | 148.61 | 150.76 | 151.77 | 13.75 | 0.719 | 0.983 | 0.997 |
Form | Non-Microencapsulated | Microencapsulated | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Level | CRV | CRV | Form | Level | Form × Level | |||||
NRC | 75% | 100% | NRC | 75% | 100% | |||||
Retinol, ng/mL | 196.12 | 202.81 | 188.84 | 201.38 | 218.58 | 205.68 | 19.42 | 0.432 | 0.752 | 0.947 |
25(OH)D3, ng/mL | 29.84 | 33.23 | 33.17 | 34.38 | 34.56 | 30.89 | 3.95 | 0.716 | 0.868 | 0.696 |
α-tocopherol, μg/mL | 0.31 bc | 0.50 ab | 0.61 a | 0.30 c | 0.55 a | 0.65 a | 0.04 | 0.505 | <0.001 | 0.754 |
Menadione, ng/mL | 7.24 b | 10.01 ab | 11.89 a | 7.15 b | 11.98 a | 11.37 a | 0.66 | 0.418 | <0.001 | 0.173 |
Thiamine, ng/mL | 53.17 | 51.10 | 52.97 | 50.08 | 48.00 | 49.63 | 4.83 | 0.437 | 0.899 | 1.000 |
Riboflavin, ng/mL | 32.89 | 33.43 | 31.67 | 31.10 | 31.30 | 33.70 | 2.96 | 0.799 | 0.973 | 0.743 |
Nicotinamide, ng/mL | 49.92 | 50.40 | 52.30 | 50.61 | 51.97 | 50.58 | 3.45 | 0.950 | 0.938 | 0.886 |
Pantothenate, ng/mL | 88.60 b | 169.53 a | 171.33 a | 88.43 b | 173.67 a | 170.00 a | 5.78 | 0.856 | <0.001 | 0.885 |
Vitamin B6, ng/mL | 9.48 | 8.95 | 9.29 | 9.78 | 8.88 | 9.02 | 0.50 | 0.975 | 0.377 | 0.847 |
Biotin, ng/mL | 7.24 | 7.66 | 7.77 | 7.37 | 7.90 | 7.79 | 1.28 | 0.904 | 0.912 | 0.997 |
Folic acid, ng/mL | 18.16 b | 20.66 a | 20.77 a | 18.18 b | 20.80 a | 20.87 a | 0.52 | 0.838 | <0.001 | 0.993 |
Vitamin B12, pmol/L | 162.34 b | 197.56 a | 214.90 a | 157.51 b | 197.06 a | 202.77 a | 6.83 | 0.318 | <0.001 | 0.698 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, P.; Zhao, J.; Wang, H.; Li, L.; Ma, Y. Effects of Vitamin Forms and Levels on Vitamin Bioavailability and Growth Performance in Piglets. Appl. Sci. 2020, 10, 4903. https://doi.org/10.3390/app10144903
Yang P, Zhao J, Wang H, Li L, Ma Y. Effects of Vitamin Forms and Levels on Vitamin Bioavailability and Growth Performance in Piglets. Applied Sciences. 2020; 10(14):4903. https://doi.org/10.3390/app10144903
Chicago/Turabian StyleYang, Pan, Jinbiao Zhao, Huakai Wang, Longxian Li, and Yongxi Ma. 2020. "Effects of Vitamin Forms and Levels on Vitamin Bioavailability and Growth Performance in Piglets" Applied Sciences 10, no. 14: 4903. https://doi.org/10.3390/app10144903
APA StyleYang, P., Zhao, J., Wang, H., Li, L., & Ma, Y. (2020). Effects of Vitamin Forms and Levels on Vitamin Bioavailability and Growth Performance in Piglets. Applied Sciences, 10(14), 4903. https://doi.org/10.3390/app10144903