Novel Electronic Device to Quantify the Cyclic Fatigue Resistance of Endodontic Reciprocating Files after Using and Sterilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Experimental Cycling Fatigue Procedure
2.3. Statistical Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gavini, G.; Santos, M.D.; Caldeira, C.L.; Machado, M.; Freire, L.G.; Iglecias, E.F.; Peters, O.A.; Candeiro, G. Nickel-titanium instruments in endodontics: A concise review of the state of the art. Braz. Oral. Res. 2018, 32, 67. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Zhou, H.M.; Zheng, Y.F.; Campbell, L.; Peng, B.; Haapasalo, M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J. Endod. 2011, 37, 1566–1571. [Google Scholar] [CrossRef]
- Testarelli, L.; Plotino, G.; Al-Sudani, D.; Vincenzi, V.; Giansiracusa, A.; Grande, N.M.; Gambarini, G. Bending properties of a new nickel-titanium alloy with a lower percent by weight of nickel. J. Endod. 2011, 37, 1293–1295. [Google Scholar] [CrossRef] [PubMed]
- Plotino, G.; Costanzo, A.; Grande, N.M.; Petrovic, R.; Testarelli, L.; Gambarini, G. Experimental evaluation on the influence of autoclave sterilization on the cyclic fatigue of new nickel-titanium rotary instruments. J. Endod. 2012, 38, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Laneve, E.; Raddato, B.; Dioguardi, M.; Di Gioia, G.; Troiano, G.; Lo Muzio, L. Sterilisation in Dentistry: A Review of the Literature. Int. J. Dent. 2019, 2019, 650728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheth, N.C.; Rathod, Y.V.; Shenoi, P.R.; Shori, D.D.; Khode, R.T.; Khadse, A.P. Evaluation of new technique of sterilization using biological indicator. J. Conserv. Dent. 2017, 20, 346–350. [Google Scholar] [CrossRef]
- Raju, T.B.V.G.; Garapati, S.; Agrawal, R.; Reddy, S.; Razdan, A.; Kumar, S.K. Sterilizing Endodontic Files by four different sterilization methods to prevent cross-infection. An In-vitro Study. J. Int. Oral. Health 2013, 5, 108–112. [Google Scholar]
- Spagnuolo, G.; Ametrano, G.; D’antò, V.; Rengo, C.; Simeone, M.; Riccitiello, F.; Amato, M. Effect of autoclaving on the surfaces of TiN-coated and conventional nickel–titanium rotary instruments. Int. Endod. J. 2012, 45, 1148–1155. [Google Scholar] [CrossRef]
- Casper, R.B.; Roberts, H.W.; Roberts, M.D.; Himel, V.T.; Bergeron, B.E. Comparison of autoclaving effects on torsional deformation and fracture resistance of three innovative endodontic file systems. J. Endod. 2011, 37, 1572–1575. [Google Scholar] [CrossRef]
- Valois, C.R.; Silva, L.P.; Azevedo, R.B. Multiple autoclave cycles affect the surface of rotary nickel-titanium files: An atomic force microscopy study. J. Endod. 2008, 34, 859–862. [Google Scholar] [CrossRef]
- Alapati, S.B.; Brantley, W.A.; Svec, T.A.; Powers, J.M.; Nusstein, J.M.; Daehn, G.S. SEM observations of nickel-titanium rotary endodontic instruments that fractured during clinical use. J. Endod. 2005, 31, 40–43. [Google Scholar] [CrossRef]
- Grassi, F.R.; Pappalettere, C.; Di Comite, M.; Corsalini, M.; Mori, G.; Ballini, A.; Crincoli, V.; Pettini, F.; Rapone, B.; Boccaccio, A. Effect of different irrigating solutions and endodontic sealers on bond strength of the dentin-post interface with and without defects. Int. J. Med. Sci. 2012, 9, 642–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seago, S.T.; Bergeron, B.E.; Kirkpatrick, T.C.; Roberts, M.D.; Roberts, H.W.; Himel, V.T.; Sabey, K.A. Effect of Repeated Simulated Clinical Use and Sterilization on the Cutting Efficiency and Flexibility of Hyflex CM Nickel-Titanium Rotary Files. J. Endod. 2015, 41, 725–728. [Google Scholar] [CrossRef] [PubMed]
- Hilfer, P.B.; Bergeron, B.E.; Mayerchak, M.J.; Roberts, H.W.; Jeansonne, B.G. Multiple autoclave cycle effects on cyclic fatigue of nickel-titanium rotary files produced by new manufacturing methods. J. Endod. 2011, 37, 72–74. [Google Scholar] [CrossRef] [PubMed]
- Alfoqom Alazemi, M.; Bryant, S.T.; Dummer, P.M. Deformation of HyFlex CM instruments and their shape recovery following heat sterilization. Int. Endod. J. 2015, 48, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.; Adeodato, C.; Barbosa, I.; Aboud, L.; Scelza, P.; Zaccaro Scelza, M. Movement kinematics and cyclic fatigue of NiTi rotary instruments: A systematic review. Int. Endod. J. 2017, 50, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Zubizarreta-Macho, A.; Mena Álvarez, J.; Albadalejo Martínez, A.; Segura-Egea, J.J.; Caviedes Brucheli, J.; Agustín-Panadero, R.; López Píriz, R.; Alonso-Ezpeleta, O. Influence of the pecking motion on the cyclic fatigue resistance of endodontic rotary files. J. Clin. Med. 2020, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, S.W. A comparison of canal preparations in straight and curved root canals. Oral. Surg. Oral. Med. Oral. Pathol. 1971, 32, 271–275. [Google Scholar] [CrossRef]
- Rubio, J.; Zarzosa, J.I.; Pallarés, A. A Comparative Study of Cyclic Fatigue of 10 Different Types of Endodontic Instruments: An in Vitro Study. Acta Stomatol. Croat. 2019, 53, 28–36. [Google Scholar] [CrossRef]
- De-Deus, G.; Vieira VT, L.; da Silva EJ, N.; Lopes, H.; Elias, C.N.; Moreira, E.J. Bending resistance and dynamic and static cyclic fatigue life of Reciproc and WaveOne large instruments. J. Endod. 2014, 40, 575–579. [Google Scholar] [CrossRef]
- Keleş, A.; Eymirli, A.; Uyanık, O.; Nagas, E. Influence of static and dynamic cyclic fatigue tests on the lifespan of four reciprocating systems at different temperatures. Int. Endod. J. 2019, 52, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Pruett, J.P.; Clement, D.J.; Carnes, D.L., Jr. Cyclic fatigue testing of nickel-titanium endodontic instruments. J. Endod. 1997, 23, 77–85. [Google Scholar] [CrossRef]
- Hulsmann, M.; Donnermeyer, D.; Schäfer, E. A critical appraisal of studies on cyclic fatigue resistance of engine-driven endodontic instruments. Int. Endod. J. 2019, 52, 1427–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olcay, K.; Eyuboglu, T.F.; Erkan, E. Cyclic fatigue resistance of wave one gold, protaper next and 2shape nickel titanium rotary instruments using a reliable method for measuring temperature. Niger. J. Clin. Pract. 2019, 22, 1335–1340. [Google Scholar] [CrossRef]
- Scott, R.; Arias, A.; Macorra, J.C.; Govindjee, S.; Peters, O.A. Resistance to cyclic fatigue of reciprocating instruments determined at body temperature and phase transformation analysis. Aust. Endod. J. 2019, 45, 400–406. [Google Scholar] [CrossRef]
- Di Nardo, D.; Galli, M.; Morese, A.; Seracchiani, M.; Ferri, V.; Miccoli, G.; Gambarini, G.; Testarelli, L. A comparative study of mechanical resistance of two reciprocating files. J. Clin. Exp. Dent. 2019, 11, 231–235. [Google Scholar] [CrossRef]
- Topçuoğlu, H.S.; Topçuoğlu, G.; Kafdağ, Ö.; Arslan, H. Cyclic fatigue resistance of new reciprocating glide path files in 45- and 60-degree curved canals. Int. Endod. J. 2018, 51, 1053–1058. [Google Scholar] [CrossRef]
- Kim, J.W.; Ha, J.H.; Cheung, G.S.P.; Versluis, A.; Kwak, S.W.; Kim, H.C. Safety of the factory preset rotation angle of reciprocating instruments. J. Endod. 2014, 40, 1671–1675. [Google Scholar] [CrossRef]
- Generali, L.; Puddu, P.; Borghi, A.; Brancolini, S.; Lusvarghi, L.; Bolelli, G.; Consolo, U.; Pedullà, E. Mechanical properties and metallurgical features of new and ex vivo used Reciproc Blue and Reciproc. Int. Endod. J. 2020, 53, 250–264. [Google Scholar] [CrossRef]
- Arias, A.; Macorra, J.C.; Govindjee, S.; Peters, O.A. Effect of gamma-ray sterilization on phase transformation behavior and fatigue resistance of contemporary nickel-titanium instruments. Clin. Oral. Investig. 2020, 20. [Google Scholar] [CrossRef]
- Dioguardi, M.; Sovereto, D.; Aiuto, R.; Laino, L.; Illuzzi, G.; Laneve, E.; Raddato, B.; Caponio, V.C.A.; Dioguardi, A.; Zhurakivska, K.; et al. Effects of Hot Sterilization on Torsional Properties of Endodontic Instruments: Systematic Review with Meta-Analysis. Materials (Basel) 2019, 12, 2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.J.; Hou, B.X.; Hou, X.M. Effect of autoclave on surface microstructure and cyclic fatigue resistance of R-phase rotary instruments. Beijing Da Xue Xue Bao Yi Xue Ban 2018, 50, 882–886. [Google Scholar] [PubMed]
- Pedullà, E.; Benites, A.; La Rosa, G.M.; Plotino, G.; Grande, N.M.; Rapisarda, E.; Generali, L. Cyclic Fatigue Resistance of Heat-treated Nickel-titanium Instruments after Immersion in Sodium Hypochlorite and/or Sterilization. J. Endod. 2018, 44, 648–653. [Google Scholar] [CrossRef]
- Champa, C.; Divya, V.; Srirekha, A.; Karale, R.; Shetty, A.; Sadashiva, P. An analysis of cyclic fatigue resistance of reciprocating instruments in different canal curvatures after immersion in sodium hypochlorite and autoclaving: An in vitro study. J. Conserv. Dent. 2017, 20, 194–198. [Google Scholar] [PubMed]
- Özyürek, T.; Yılmaz, K.; Uslu, G. The effects of autoclave sterilization on the cyclic fatigue resistance of ProTaper Universal, ProTaper Next, and ProTaper Gold nickel-titanium instruments. Restor. Dent. Endod. 2017, 42, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Shen, Y.; Peng, B.; Haapasalo, M. Effect of autoclave sterilization on the cyclic fatigue resistance of thermally treated Nickel-Titanium instruments. Int. Endod. J. 2016, 49, 990–995. [Google Scholar] [CrossRef]
Time of Use | Sterilization Cycles | n | Mean | SD | Minimum | Maximum | Fracture Length |
---|---|---|---|---|---|---|---|
0 s | 0 a | 10 | 235.29 | 45.07 | 153.20 | 282.83 | 3.06 |
1 a | 10 | 239.55 | 35.54 | 176.75 | 276.66 | 3.10 | |
5 a | 10 | 225.26 | 32.04 | 164.10 | 265.31 | 3.17 | |
10 a | 10 | 235.30 | 32.83 | 182.28 | 276.91 | 3.04 | |
60 s | 0 b | 10 | 195.59 | 45.56 | 112.84 | 242.92 | 3.13 |
1 b | 10 | 191.45 | 31.82 | 136.77 | 234.89 | 3.06 | |
5 b | 10 | 182.64 | 28.97 | 132.47 | 216.00 | 3.01 | |
10 b | 10 | 191.18 | 29.71 | 145.94 | 234.33 | 3.04 | |
120 | 0 c | 10 | 88.58 | 12.39 | 61.82 | 102.35 | 3.11 |
1 c | 10 | 80.85 | 9.70 | 61.91 | 92.87 | 3.08 | |
5 c | 10 | 86.90 | 9.56 | 72.16 | 102.01 | 2.99 | |
10 c | 10 | 97.62 | 10.40 | 82.09 | 121.11 | 3.02 |
Study Group | Weibull Shape (β) | Weibull Scale (η) | ||||||
---|---|---|---|---|---|---|---|---|
Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
0 s | 8.3142 | 1.0833 | 6.4404 | 10.7332 | 248.5615 | 4.9655 | 239.0173 | 258.4868 |
60 s | 6.8989 | 0.8808 | 5.3716 | 8.8603 | 203.9091 | 4.9179 | 194.4944 | 213.7794 |
120 s | 8.0777 | 0.9119 | 6.4743 | 10.0782 | 93.5190 | 1.9349 | 89.8025 | 97.3892 |
0 cycles | 2.7040 | 0.4074 | 2.0127 | 3.6328 | 195.6014 | 13.9108 | 170.1516 | 224.8576 |
1cycle | 2.6640 | 0.4060 | 1.9761 | 3.5913 | 192.7207 | 13.8859 | 167.3392 | 221.9521 |
5 cycles | 2.9873 | 0.4529 | 2.2195 | 4.0208 | 185.5872 | 11.9333 | 163.6121 | 210.5138 |
10 cycles | 3.1770 | 0.4761 | 2.3685 | 4.2617 | 195.9868 | 11.8612 | 174.0652 | 220.6693 |
Time of Use | Sterilization Cycles | n | Mean | SD | Minimum | Maximum | Fracture Length |
---|---|---|---|---|---|---|---|
0 s | 0 a | 10 | 1176.35 | 225.32 | 766.00 | 1414.00 | 3.06 |
1 a | 10 | 1259.40 | 162.90 | 989.50 | 1500.00 | 3.10 | |
5 a | 10 | 1120.85 | 156.52 | 820.50 | 1316.50 | 3.17 | |
10 a | 10 | 1176.44 | 164.09 | 911.35 | 1384.50 | 3.04 | |
60 s | 0 b | 10 | 977.90 | 227.76 | 564.00 | 1214.50 | 3.13 |
1 b | 10 | 954.80 | 157.00 | 684.00 | 1174.50 | 3.06 | |
5 b | 10 | 913.30 | 144.78 | 662.50 | 1080.00 | 3.01 | |
10 b | 10 | 955.80 | 148.54 | 729.50 | 1171.50 | 3.04 | |
120 | 0 c | 10 | 442.96 | 61.98 | 309.10 | 512.00 | 3.11 |
1 c | 10 | 404.26 | 48.51 | 309.55 | 464.35 | 3.08 | |
5 c | 10 | 431.98 | 48.33 | 360.80 | 510.00 | 2.99 | |
10 c | 10 | 488.12 | 51.96 | 410.45 | 605.50 | 3.02 |
Study Group | Weibull Shape (β) | Weibull Scale (η) | ||||||
---|---|---|---|---|---|---|---|---|
Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
0 s | 8.1790 | 1.0424 | 6.3712 | 10.4999 | 1257.379 | 25.5617 | 1208.264 | 1308.4906 |
60 s | 6.9078 | 0.8808 | 5.3803 | 8.8690 | 1018.7335 | 24.5392 | 971.7553 | 1067.9829 |
120 s | 8.0244 | 0.9069 | 6.4301 | 10.0141 | 467.0982 | 9.7300 | 448.4118 | 486.5633 |
0 cycles | 2.7040 | 0.4074 | 2.0127 | 3.6328 | 195.6014 | 13.9108 | 170.1516 | 224.8576 |
1cycle | 2.6640 | 0.4060 | 1.9761 | 3.5913 | 192.7207 | 13.8859 | 167.3392 | 221.9521 |
5 cycles | 2.9873 | 0.4529 | 2.2195 | 4.0208 | 185.5872 | 11.9333 | 163.6121 | 210.5138 |
10 cycles | 3.1770 | 0.4761 | 2.3685 | 4.2617 | 195.9868 | 11.8612 | 174.0652 | 220.6693 |
Time of Use | Sterilization Cycles | n | Mean | SD | Minimum | Maximum | Fracture Length |
---|---|---|---|---|---|---|---|
0s | 0 a | 10 | 235.29 | 45.07 | 153.20 | 282.83 | 3.06 |
1 a | 10 | 239.55 | 35.54 | 176.75 | 276.66 | 3.10 | |
5 a | 10 | 225.26 | 32.04 | 164.10 | 265.31 | 3.17 | |
10 a | 10 | 229.30 | 46.31 | 122.28 | 276.91 | 3.04 | |
60s | 0 b | 10 | 214.69 | 30.30 | 162.27 | 251.10 | 3.13 |
1 b | 10 | 205.45 | 38.46 | 136.77 | 265.01 | 3.06 | |
5 b | 10 | 186.64 | 38.88 | 132.47 | 246.87 | 3.01 | |
10 b | 10 | 183.18 | 48.23 | 113.82 | 264.33 | 3.04 | |
120 | 0 c | 10 | 88.58 | 12.39 | 61.82 | 102.35 | 3.11 |
1 c | 10 | 80.85 | 9.70 | 61.91 | 92.87 | 3.08 | |
5 c | 10 | 86.90 | 9.56 | 72.16 | 102.01 | 2.99 | |
10 c | 10 | 97.62 | 10.40 | 82.09 | 121.11 | 3.02 |
Study Group | Weibull Shape (β) | Weibull Scale (η) | ||||||
---|---|---|---|---|---|---|---|---|
Estimate | St Error | Lower | Upper | Estimate | St Error | Lower | Upper | |
0 s | 7.8371 | 1.0332 | 6.0526 | 10.1478 | 247.8093 | 5.2331 | 237.7620 | 258.2813 |
60 s | 5.9056 | 0.7502 | 4.6039 | 7.5752 | 213.5034 | 6.0177 | 202.0287 | 225.6298 |
120 s | 8.0777 | 0.9119 | 6.4743 | 10.0782 | 93.5190 | 1.9349 | 89.8025 | 97.3892 |
0 cycles | 2.8397 | 0.4369 | 2.1004 | 3.8391 | 202.3470 | 13.6633 | 177.2639 | 230.9795 |
1cycle | 2.6486 | 0.4087 | 1.9573 | 3.5841 | 198.0170 | 14.3348 | 171.8235 | 228.2036 |
5 cycles | 2.9091 | 0.4413 | 2.1610 | 3.9163 | 187.3384 | 12.3756 | 164.5872 | 213.2345 |
10 cycles | 2.8747 | 0.4233 | 2.1540 | 3.8366 | 191.7153 | 12.8646 | 168.0889 | 218.6626 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zubizarreta-Macho, Á.; Alonso-Ezpeleta, Ó.; Albaladejo Martínez, A.; Faus Matoses, V.; Caviedes Brucheli, J.; Agustín-Panadero, R.; Mena Álvarez, J.; Vizmanos Martínez-Berganza, F. Novel Electronic Device to Quantify the Cyclic Fatigue Resistance of Endodontic Reciprocating Files after Using and Sterilization. Appl. Sci. 2020, 10, 4962. https://doi.org/10.3390/app10144962
Zubizarreta-Macho Á, Alonso-Ezpeleta Ó, Albaladejo Martínez A, Faus Matoses V, Caviedes Brucheli J, Agustín-Panadero R, Mena Álvarez J, Vizmanos Martínez-Berganza F. Novel Electronic Device to Quantify the Cyclic Fatigue Resistance of Endodontic Reciprocating Files after Using and Sterilization. Applied Sciences. 2020; 10(14):4962. https://doi.org/10.3390/app10144962
Chicago/Turabian StyleZubizarreta-Macho, Álvaro, Óscar Alonso-Ezpeleta, Alberto Albaladejo Martínez, Vicente Faus Matoses, Javier Caviedes Brucheli, Rubén Agustín-Panadero, Jesús Mena Álvarez, and Fernando Vizmanos Martínez-Berganza. 2020. "Novel Electronic Device to Quantify the Cyclic Fatigue Resistance of Endodontic Reciprocating Files after Using and Sterilization" Applied Sciences 10, no. 14: 4962. https://doi.org/10.3390/app10144962
APA StyleZubizarreta-Macho, Á., Alonso-Ezpeleta, Ó., Albaladejo Martínez, A., Faus Matoses, V., Caviedes Brucheli, J., Agustín-Panadero, R., Mena Álvarez, J., & Vizmanos Martínez-Berganza, F. (2020). Novel Electronic Device to Quantify the Cyclic Fatigue Resistance of Endodontic Reciprocating Files after Using and Sterilization. Applied Sciences, 10(14), 4962. https://doi.org/10.3390/app10144962