Release of Antioxidant Compounds of Zingiber officinale by Ultrasound-Assisted Aqueous Extraction and Evaluation of Their In Vitro Bioaccessibility
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments
2.3. Ginger Sample (Zingiber Officinale)
2.4. Experimental Design
2.5. Ultrasound-Assisted Extraction (UAE)
2.6. Measurements of Response Variables
2.6.1. ABTS Assay
2.6.2. DPPH Assay
2.6.3. FRAP Assay
2.6.4. Determination of Total Phenolic Content
2.7. Optimization and Validation
Confirmatory Experiments
2.8. In Vitro Bioaccessibility Test
3. Results and Discussion
3.1. Experimental Design
3.2. Antioxidant Capacity
3.3. Total Phenolic Content
3.4. Model Validation
3.5. In-Vitro Bioaccessibility Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Carocho, M.; Ferreira, I.C. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Lawson, M.; Jomova, K.; Poprac, P.; Kuca, K.; Musilek, K.; Valko, M. Free Radicals and Antioxidants in Human Disease. In Nutritional Antioxidant Therapies: Treatments and Perspectives; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 283–305. [Google Scholar]
- Di Mauro, M.D.; Fava, G.; Spampinato, M.; Aleo, D.; Melilli, B.; Saita, M.G.; Centonze, G.; Maggiore, R.; D’Antona, N. Polyphenolic Fraction from Olive Mill Wastewater: Scale-Up and in Vitro Studies for Ophthalmic Nutraceutical Applications. Antioxidants 2019, 8, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nile, S.H.; Park, S.W. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crop. Prod. 2015, 70, 238–244. [Google Scholar] [CrossRef]
- Tapia-Hernández, J.A.; Rodríguez-Felix, F.; Juárez-Onofre, J.E.; Ruiz-Cruz, S.; Robles-García, M.A.; Borboa-Flores, J.; Wong-Corral, F.J.; Cinco-Moroyoqui, F.J.; Castro-Enríquez, D.D.; Del-Toro-Sánchez, C.L. Zein-polysaccharide nanoparticles as matrices for antioxidant compounds: A strategy for prevention of chronic degenerative diseases. Food Res. Int. 2018, 111, 451–471. [Google Scholar] [CrossRef] [PubMed]
- Shukla, Y.; Singh, M. Cancer preventive properties of ginger: A brief review. Food Chem. Toxicol. 2007, 45, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.Y.; Arulkumar, R.; Bang, E.; Noh, S.-G.; Yokozawa, T. Role of Garlic and Ginger in Anti-oxidative and Anti-inflammatory Effects in Aging. SDRP J. Food Sci. Technol. 2019, 4, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.N.; Chang, C.C.; Ng, C.C.; Wang, C.Y.; Shyu, Y.T.; Chang, T.L. Antioxidant and Antimicrobial Activity of Zingiberaceae Plants in Taiwan. Plant Foods Hum. Nutr. 2007, 63, 15–20. [Google Scholar] [CrossRef]
- Srinivasan, K. Ginger rhizomes A spice with multiple health beneficial potentials. PharmaNutrition 2017, 5, 18–28. [Google Scholar] [CrossRef]
- Mahboubi, M. Zingiber officinale Rosc. essential oil, a review on its composition and bioactivity. Clin. Phytosci. 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.L.; Li, X.Z.; Dai, F.; Kang, Y.; Li, Y.; Ma, M.; Ren, X.-R.; Du, G.W.; Jin, X.L.; Zhou, B. Influence of side chain structure changes on antioxidant potency of the [6]-gingerol related compounds. Food Chem. 2014, 165, 191–197. [Google Scholar] [CrossRef]
- Koch, W.; Kukula-Koch, W.; Marzec, Z.; Kasperek, E.; Wyszogrodzka-Koma, L.; Szwerc, W.; Asakawa, Y. Application of Chromatographic and Spectroscopic Methods towards the Quality Assessment of Ginger Rhizomes from Ecological Plantations. Int. J. Mol. Sci. 2017, 18, 452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, C.S.; Bisinella, R.Z.B.; Bet, C.D.; Beninca, C.; Demiate, I.M.; Schnitzler, E. Physicochemical, Thermal, Structural and Pasting Properties of Unconventional Starches from Ginger (Zingiber officinale) and White Yam (sp.). Braz. Arch. Boil. Technol. 2019, 62, 1–12. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Anti-oxidant activity and total phenolic content of some Asian vegetables. Int. J. Food Sci. Technol. 2002, 37, 153–161. [Google Scholar] [CrossRef]
- Huda-Faujan, N.; Noriham, A.; Norrakiah, A.S.; Babji, A.S. Antioxidant activity of plants methanolic extracts containing phenolic compounds. Afr. J. Biotechnol. 2009, 8, 484–489. [Google Scholar]
- Ramírez-Godínez, J.; Jaimez-Ordaz, J.; Castañeda-Ovando, A.; Añorve-Morga, J.; Salazar-Pereda, V.; González-Olivares, L.G.; Contreras-López, E. Optimization of Physical Conditions for the Aqueous Extraction of Antioxidant Compounds from Ginger) Applying a Box-Behnken Design. Plant Foods Hum. Nutr. 2016, 72, 34–40. [Google Scholar] [CrossRef]
- Zafra-Rojas, Q.Y.; Cruz-Cansino, N.S.; Quintero-Lira, A.; Gómez-Aldapa, C.A.; Alanís-García, E.; Cervantes-Elizarrarás, A.; Güemes-Vera, N.; Ramírez-Moreno, E. Application of Ultrasound in a Closed System: Optimum Condition for Antioxidants Extraction of Blackberry (Rubus fructicosus) Residues. Molecules 2016, 21, 950. [Google Scholar] [CrossRef] [Green Version]
- Rehman, T.; Arshad, M.U.; Ahmad, R.S.; Rasool, B.; Hussain, G.; Saeed, F.; Shahbaz, M.; Ahmed, A.; Imran, M.; Khan, M.A.; et al. Reconnoitring the impact of different extraction techniques on ginger bioactive moieties extraction, antioxidant characterization and physicochemical properties for their therapeutic effect. Pak. J. Pharm. Sci. 2019, 32, 2223–2236. [Google Scholar]
- Chemat, F.; Vian, M.A.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Jambrak, A.R.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Teh, S.-S.; Birch, E.J. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes. Ultrason. Sonochem 2014, 21, 346–353. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Santos, M.P.; Souza, M.C.; Sumere, B.R.; Da Silva, L.C.; Cunha, D.T.; Bezerra, R.M.N.; Rostagno, M.A. Extraction of bioactive compounds from pomegranate peel (Punica granatum L.) with pressurized liquids assisted by ultrasound combined with an expansion gas. Ultrason. Sonochem. 2019, 54, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Herbach, K.M.; Mosshammer, M.R.; Carle, R.; Yi, W.; Sellappan, S.; Akoh, C.C.; Bunch, R.; Felker, P. Color, Betalain Pattern, and Antioxidant Properties of Cactus Pear (Opuntia spp.) Clones. J. Agric. Food Chem. 2005, 53, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.B.; Choudhary, R.; Watson, D.G.; Lightfoot, D.A. Effects of ultrasonic treatments on the polyphenol and antioxidant content of spinach extracts. Ultrason. Sonochem. 2015, 24, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, J.; Xu, Z.; Xiang, C.; Liu, J.; Zhou, L.; Li, T.; Yang, Z.; Ding, C. Comparative evaluation of maceration and ultrasonic-assisted extraction of phenolic compounds from fresh olives. Ultrason. Sonochem. 2017, 37, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Rincón, E.; Balu, A.M.; Luque, R.; Cantador, L.S. Mechanochemical extraction of antioxidant phenolic compounds from Mediterranean and medicinal Laurus nobilis: A comparative study with other traditional and green novel techniques. Ind. Crop. Prod. 2019, 141, 111805. [Google Scholar] [CrossRef]
- Sasikala, P.; Chandralekha, A.; Chaurasiya, R.S.; Chandrasekhar, J.; Raghavarao, K. Ultrasound-assisted extraction and adsorption of polyphenols from Ginger Rhizome (Zingiber officinale). Sep. Sci. Technol. 2017, 53, 439–448. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Herbello-Hermelo, P.; Domínguez-González, M.R.; Bermejo-Barrera, P.; Moreda-Piñeiro, J. Bioavailability assessment of essential and toxic metals in edible nuts and seeds. Food Chem. 2016, 205, 146–154. [Google Scholar] [CrossRef]
- Ah-Hen, K.S.; Mathias-Rettig, K.; Gómez-Pérez, L.S.; Riquelme-Asenjo, G.; Lemus-Mondaca, R.; Muñoz-Fariña, O. Bioaccessibility of bioactive compounds and antioxidant activity in murta (Ugni molinae T.) berries juices. J. Food Meas. Charact. 2017, 12, 602–615. [Google Scholar] [CrossRef]
- Medina, N.; Ayora-Talavera, T.; Espinosa-Andrews, H.; Sánchez-Contreras, A.; Pacheco, N. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Mokrani, A.; Madani, K. Effect of solvent, time and temperature on the extraction of phenolic compounds and antioxidant capacity of peach (Prunus persica L.) fruit. Sep. Purif. Technol. 2016, 162, 68–76. [Google Scholar] [CrossRef]
- Xu, G.; Ye, X.; Chen, J.; Liu, D. Effect of Heat Treatment on the Phenolic Compounds and Antioxidant Capacity of Citrus Peel Extract. J. Agric. Food Chem. 2007, 55, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Sharayei, P.; Azarpazhooh, E.; Zomorodi, S.; Ramaswamy, H.S. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT 2019, 101, 342–350. [Google Scholar] [CrossRef]
- Chohan, M.; Forster-Wilkins, G.; Opara, E. Determination of the Antioxidant Capacity of Culinary Herbs Subjected to Various Cooking and Storage Processes Using the ABTS*+ Radical Cation Assay. Plant Foods Hum. Nutr. 2008, 63, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.W.C.; Lim, Y.; Wong, L.; Lianto, F.; Wong, S.; Lim, K.; Joe, C.; Lim, T. Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Food Chem. 2008, 109, 477–483. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Sun, M.; Corke, H. Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. J. Agric. Food Chem. 2005, 53, 7749–7759. [Google Scholar] [CrossRef]
- Chen, S.; Zeng, Z.; Hu, N.; Bai, B.; Wang, H.; Suo, Y. Simultaneous optimization of the ultrasound-assisted extraction for phenolic compounds content and antioxidant activity of Lycium ruthenicum Murr. fruit using response surface methodology. Food Chem. 2018, 242, 1–8. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A. Antioxidant Activities, Total Phenolics and Flavonoids Content in Two Varieties of Malaysia Young Ginger (Zingiber officinale Roscoe). Molecules 2010, 15, 4324–4333. [Google Scholar] [CrossRef] [Green Version]
- Anese, M.; Mirolo, G.; Beraldo, P.; Lippe, G. Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem. 2013, 136, 458–463. [Google Scholar] [CrossRef]
- Ramírez-Moreno, E.; Hervert-Hernández, D.; Sánchez-Mata, M.D.C.; Díez-Marqués, C.; Goñi, I. Intestinal bioaccessibility of polyphenols and antioxidant capacity of pulp and seeds of cactus pear. Int. J. Food Sci. Nutr. 2011, 62, 839–843. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Cilla, A.; Perales, S.; Lagarda, M.J.; Barberá, R.; Clemente, G.; Farré, R. Influence of storage and in vitro gastrointestinal digestion on total antioxidant capacity of fruit beverages. J. Food Compos. Anal. 2011, 24, 87–94. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Wu, X.; Zhao, T.; Zhao, J.; Li, F.; Zou, Y.; Mao, G.; Yang, L.-Q. In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry (Morus atropurpurea Roxb.) following simulated gastro-intestinal digestion. Food Res. Int. 2012, 46, 76–82. [Google Scholar] [CrossRef]
- Hilary, S.; Tomás-Barberán, F.A.; Martinez-Blazquez, J.A.; Kizhakkayil, J.; Souka, U.; Al-Hammadi, S.; Habib, H.; Ibrahim, W.; Platat, C. Polyphenol characterisation of Phoenix dactylifera L. (date) seeds using HPLC-mass spectrometry and its bioaccessibility using simulated in-vitro digestion/Caco-2 culture model. Food Chem. 2020, 311, 125969. [Google Scholar] [CrossRef]
Experimental Factor | Level | ||||
---|---|---|---|---|---|
−α | −1 | 0 | 1 | +α | |
x1 | 78 | 80 | 85 | 90 | 92 |
x2 | 26 | 30 | 40 | 50 | 54 |
Variable Coded Values | Responses | ||||
---|---|---|---|---|---|
x1 | x2 | Y1 | Y2 | Y3 | Y4 |
−1 | −1 | 154.62 | 20.63 | 149.30 | 14.33 |
+1 | −1 | 128.21 | 13.28 | 109.77 | 11.74 |
−1 | +1 | 141.15 | 18.88 | 140.70 | 13.62 |
+1 | +1 | 125.91 | 13.10 | 108.20 | 10.38 |
−α | 0 | 138.48 | 17.95 | 136.23 | 12.94 |
+α | 0 | 109.65 | 12.23 | 93.18 | 8.18 |
0 | −α | 157.15 | 22.53 | 168.80 | 17.11 |
0 | +α | 139.80 | 16.59 | 130.92 | 13.54 |
0 | 0 | 133.03 | 13.58 | 138.92 | 12.40 |
0 | 0 | 133.14 | 14.24 | 139.65 | 12.80 |
0 | 0 | 134.06 | 14.40 | 136.77 | 12.07 |
0 | 0 | 132.05 | 13.64 | 137.35 | 11.99 |
0 | 0 | 134.61 | 14.07 | 136.70 | 12.62 |
Parameter | Response | |||
---|---|---|---|---|
Y1 | Y2 | Y3 | Y4 | |
Intercept | ||||
β0 | −615 | 230 | −3084 | −239.6 |
Linear effect | ||||
β1 | 25.33 | −3.25 | 83 | 6.71 |
β2 | −11.53 | −2.86 | −7.52 | −0.91 |
Quadratic effect | ||||
β11 | −0.1743 | 0.0136 | −0.5160 | −0.0406 |
β22 | 0.0785 | 0.0257 | 0.0467 | 0.0137 |
Cross-product effect | ||||
β12 | 0.0558 | 0.0079 | 0.0351 | −0.0032 |
R2 | 0.9905 | 0.9178 | 0.9300 | 0.9601 |
R2-adj | 0.9837 | 0.8591 | 0.8800 | 0.9317 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras-López, E.; Castañeda-Ovando, A.; Jaimez-Ordaz, J.; Cruz-Cansino, N.d.S.; González-Olivares, L.G.; Rodríguez-Martínez, J.S.; Ramírez-Godínez, J. Release of Antioxidant Compounds of Zingiber officinale by Ultrasound-Assisted Aqueous Extraction and Evaluation of Their In Vitro Bioaccessibility. Appl. Sci. 2020, 10, 4987. https://doi.org/10.3390/app10144987
Contreras-López E, Castañeda-Ovando A, Jaimez-Ordaz J, Cruz-Cansino NdS, González-Olivares LG, Rodríguez-Martínez JS, Ramírez-Godínez J. Release of Antioxidant Compounds of Zingiber officinale by Ultrasound-Assisted Aqueous Extraction and Evaluation of Their In Vitro Bioaccessibility. Applied Sciences. 2020; 10(14):4987. https://doi.org/10.3390/app10144987
Chicago/Turabian StyleContreras-López, Elizabeth, Araceli Castañeda-Ovando, Judith Jaimez-Ordaz, Nelly del Socorro Cruz-Cansino, Luis Guillermo González-Olivares, José Sergio Rodríguez-Martínez, and Juan Ramírez-Godínez. 2020. "Release of Antioxidant Compounds of Zingiber officinale by Ultrasound-Assisted Aqueous Extraction and Evaluation of Their In Vitro Bioaccessibility" Applied Sciences 10, no. 14: 4987. https://doi.org/10.3390/app10144987
APA StyleContreras-López, E., Castañeda-Ovando, A., Jaimez-Ordaz, J., Cruz-Cansino, N. d. S., González-Olivares, L. G., Rodríguez-Martínez, J. S., & Ramírez-Godínez, J. (2020). Release of Antioxidant Compounds of Zingiber officinale by Ultrasound-Assisted Aqueous Extraction and Evaluation of Their In Vitro Bioaccessibility. Applied Sciences, 10(14), 4987. https://doi.org/10.3390/app10144987