Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment
2.2. Preparation of Plant Growth-Promoting Bacteria (PGPB) Inoculums and Seed Treatments
2.3. Chemical Fertilization Treatment
2.4. Drought/Saline Stress Experiment
2.5. Chlorophyll Fluorescence Parameters Referring to the Non-Photochemical Quenching
2.6. Chlorophyll Content
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yaghoubi Khanghahi, M.; Murgese, P.; Strafella, S.; Crecchio, C. Soil Biological Fertility and Bacterial Community Response to Land Use Intensity: A Case Study in the Mediterranean Area. Diversity 2019, 11, 211. [Google Scholar] [CrossRef] [Green Version]
- Guidi, L.; Calatayud, A. Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environ. Exp. Bot. 2014, 103, 42–52. [Google Scholar] [CrossRef]
- Chairi, F.; Sanchez-Bragado, R.; Serret, M.D.; Aparicio, N.; Nieto-Taladriz, M.T.; Araus, J.L. Agronomic and physiological traits related to the genetic advance of semi-dwarf durum wheat: The case of Spain. Plant Sci. 2019, 110210. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.E.; Zhang, C.M.; Su, Y.Q.; Ma, J.; Zhang, Z.W.; Yuan, M.; Zhang, H.Y.; Yuan, S. Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environ. Exp. Bot. 2017, 135, 45–55. [Google Scholar] [CrossRef]
- Roháček, K.; Soukupová, J.; Barták, M. Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. In Plant Cell Compartments-Selected Topics; Kerala - India, Plant Cell Compartments: Kerala, India, 2008; pp. 41–104. [Google Scholar]
- Van Amerongen, H.; Chmeliov, J. Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. BBA Bioenerg. 2020, 1861, 148119. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence. a practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef]
- Porcel, R.; Redondo-Gómez, S.; Mateos-Naranjo, E.; Aroca, R.; Garcia, R.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J. Plant Physiol. 2015, 186, 75–83. [Google Scholar] [CrossRef]
- Roháček, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 2002, 40, 13–29. [Google Scholar] [CrossRef]
- Pii, Y.; Borruso, L.; Brusetti, L.; Crecchio, C.; Cesco, S.; Mimmo, T. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol. Biochem. 2016, 99, 39–48. [Google Scholar] [CrossRef]
- YaghoubiKhanghahi, M.; Ricciuti, P.; Allegretta, I.; Terzano, R.; Crecchio, C. Solubilization of insoluble zinc compounds by zinc solubilizing bacteria (ZSB) and optimization of their growth conditions. Environ. Sci. Pollut. R. 2018, 25, 25862–25868. [Google Scholar]
- Meena, V.S.; Meena, S.K.; Verma, J.P. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecol. Eng. 2017, 107, 8–32. [Google Scholar] [CrossRef]
- Kanagendran, A.; Chatterjee, P.; Liu, B.; Sa, T.; Pazouki, L.; Niinemets, U. Foliage inoculation by Burkholderiavietnamiensis CBMB40 antagonizes methyl jasmonate-mediated stress in Eucalyptus grandis. J. Plant Physiol. 2019, 242, 153032. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Samaddar, S.; Niinemets, Ü.; Sa, T.M. Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defence and H+ ATPase activity. Microbiol. Res. 2018, 215, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Santiago, C.D.; Yagi, S.; Ijima, M.; Nashimoto, T.; Sawada, M.; Ikeda, S.; Asano, K.; Orikasa, Y.; Ohwada, T. Bacterial compatibility in combined inoculations enhances the growth of potato seedlings. Microbes Environ. 2017, 32, 14–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of ChlF. Biochim. Biophys. Acta 1989, 99, 87–92. [Google Scholar] [CrossRef]
- Lazár, D. Parameters of photosynthetic energy partitioning. J. Plant Physiol. 2015, 175, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef]
- Kato, M.C.; Hikosaka, K.; Hirotsu, N.; Makino, A.; Hirose, T. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiol. 2003, 44, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Demmig-Adams, B.; Adams, W.W.; Barker, D.H.; Logan, B.A.; Bowling, D.R.; Verhoeven, A.S. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol. Plant. 1996, 98, 253–264. [Google Scholar] [CrossRef]
- Buffoni, M.; Testi, M.G.; Pesaresi, P.; Garlaschi, F.M.; Jennings, R.C. A study of the relation between CP29 phosphorylation, zeaxanthin content and fluorescence quenching parameters in Zea mays leaves. Physiol. Plant. 1998, 102, 318–324. [Google Scholar] [CrossRef]
- Schreiber, U.; Schliwa, U.; Bilger, W. Continuous recording of photochemical and non photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Porra, R.J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 2002, 73, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Endo, T.; Uebayashi, N.; Ishida, S.; Ikeuchi, M.; Sato, F. Light energy allocation at PSII under field light conditions: How much energy is lost in NPQ-associated dissipation? Plant Physiol. Biochem. 2014, 81, 115–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, D.M.; Johnson, G.; Kiirats, O. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef]
- Hendrickson, L.; Furbank, R.T.; Chow, W.S. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth. Res. 2004, 82, 73–81. [Google Scholar] [CrossRef]
- Bennett, D.I.G.; Amaranath, K.; Park, S.; Steen, C.J.; Morris, J.M.; Fleming, G.R. Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biol. 2019, 9, 190043. [Google Scholar] [CrossRef]
- Flexas, J.; Loreto, F.; Medrano, H. Terrestrial Photosynthesis in a Changing Environment: A Molecular, Physiological and Ecological Approach; Cambridge University Press: New York, NY, USA, 2012. [Google Scholar]
- Acosta-Motos, J.R.; Ortuño, M.F.; Bernal-Vicente, A.; Diaz-Vivancos, P.; Sanchez-Blanco, M.J.; Hernandez, J.A. Plant responses to salt stress: Adaptive mechanisms. Agronomy 2017, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity. PeerJ 2019, 6, 6240. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.A.; Ghajar Sepanlou, M.; Salvatori, E.; Crecchio, C. Evaluation of leaf photosynthetic characteristics and photosystem II photochemistry of rice (Oryza sativa L.) under potassium soloubilizing bacteria (KSB) inoculation. Photosynthetica 2019, 57, 500–511. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Motos, J.R.; Díaz-Vivancos, P.; Álvarez, S.; Fernández-García, N.; Sánchez-Blanco, M.J.; Hernández, J.A. NaCl-induced physiological and biochemical adaptative mechanism in the ornamental Myrtuscummunis L. plants. J. Plant Physiol. 2015, 183, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Shu, S.; Yuan, L.Y.; Guo, S.R.; Sun, J.; Yuan, Y.H. Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress. Plant Physiol. Biochem. 2013, 63, 209–216. [Google Scholar] [CrossRef]
- Bahari, A.; Pirdashti, H.; Yaghoubi, M. The effects of amino acid fertilizers spraying on photosynthetic pigments and antioxidant enzymes of wheat (Triticum aestivum L.) under salinity stress. Int. J. Agron. Plant Prod. 2013, 4, 787–793. [Google Scholar]
- Meena, M.G.; Yadav, R.K.; Narjary, B.; Yadav, G.; Jat, H.S.; Sheoran, P.; Meena, M.K.; Antil, R.S.; Meena, B.L.; Singh, H.V.; et al. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review. Waste Manag. 2019, 84, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.A.; Ghajar Sepanlou, M. The role of potassium solubilizing bacteria (KSB) inoculations on grain yield, dry matter remobilization and translocation in rice (Oryza sativa L.). J. Plant Nutr. 2019, 42, 1165–1179. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Pirdashti, H.; Shahsavarpour Lendeh, K.; Gilani, Z.; Yaghoubi Khanghahi, M.; Crecchio, C. Effects of plant growth promoting microrganisms inoculums on mineral nutrition, growth and productivity of rice (Oryza sativa L.). J. Plant Nutr. 2020, 43, 1643–1660. [Google Scholar] [CrossRef]
- Vandana, U.K.; Singha, B.; Gulzar, A.B.M.; Mazumder, P.B. Molecular Mechanisms in Plant Growth Promoting Bacteria (PGPR) to Resist Environmental Stress in Plants; Academic Press: Cambridge, MA, USA, 2020; pp. 221–233. [Google Scholar]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.A.; Ghajar Sepanlou, M. Potassium solubilising bacteria (KSB) isolated from rice paddy soil: From isolation, identification to K use efficiency. Symbiosis 2018, 76, 13–23. [Google Scholar] [CrossRef]
- Yaghoubi Khanghahi, M.; Pirdashti, H.; Rahimian, H.; Nematzadeh, G.A.; Ghajar Sepanlou, M. Nutrient use efficiency and nutrient uptake promoting of rice by potassium solubilizing bacteria (KSB). Cereal Res. Commun. 2018, 46, 739–750. [Google Scholar] [CrossRef]
- Hagaggi, N.S.A.; Mohamed, A.A.A. Enhancement of Zea mays (L.) growth performance using indole acetic acid producing endophyte Mixtatheicola isolated from Solenostemma argel (Hayne). S. Afr. J. Bot. 2020. [Google Scholar] [CrossRef]
- Nautiyal, C.S.; Srivastava, S.; Chauhan, P.S.; Seem, K.; Mishra, A.; Sopory, S.K. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 2013, 66, 1–9. [Google Scholar] [CrossRef]
- Kumar, A.; Patel, A.S.; Meena, V.S.; Srivastava, R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal. Agric. Biotechnol. 2019, 20, 101271. [Google Scholar] [CrossRef]
Parameter | Equation | Reference |
---|---|---|
Non-photochemical quenching (NPQ) | Bilger and Björkman [18] | |
Quantum yield of thermal dissipation in the DAS (L) | Kato et al. [19] | |
Quantum yield of thermal dissipation in the LAS (D) | Kato et al. [19] | |
Fraction of light absorbed by PSII that is used in photochemistry (P) | Demmig-Adams et al. [20] | |
Complete non-photochemical quenching of ChlF (qCN) | Buffoni et al. [21] | |
Total quenching of variable ChlF (qTV) | Schreiber et al. [22] | |
Total quenching of ChlF (qTQ) | Buffoni et al. [21] | |
Ratio of the quantum yield of actual PSII photochemistry in LAS to the quantum yield of the constitutive non-regulatory NPQ (PQ) | Lazár [17] |
Experiment | PGPB Inoculation | Chemicals | P (±SD) | Rate of Change (%) | L (±SD) | Rate of Change (%) | D (±SD) | Rate of Change (%) |
---|---|---|---|---|---|---|---|---|
Non-stress | I | −CF | 0.73 b (±0.02) | - | 0.21 a (±0.03) | - | 0.061 a (±0.00) | - |
½CF | 0.74 ab (±0.03) | +1.84 | 0.21 a (±0.01) | −0.86 | 0.045 ab (±0.00) | −26.23 | ||
CF | 0.75 a (±0.04) | +2.54 | 0.20 a (±0.02) | −3.01 | 0.048 ab (±0.00) | −20.15 | ||
+I | −CF | 0.75 a (±0.03) | +3.25 | 0.20 a (±0.01) | −3.15 | 0.043 b (±0.00) | −28.24 | |
½CF | 0.75 a (±0.02) | +3.57 | 0.20 a (±0.01) | −4.40 | 0.043 b (±0.00) | −27.78 | ||
CF | 0.75 a (±0.02) | +2.98 | 0.20 a (±0.02) | −3.32 | 0.044 b (±0.00) | −24.45 | ||
Drought stress | I | −CF | 0.66 c (±0.03) | - | 0.24 a (±0.02) | - | 0.097 a (±0.01) | - |
½CF | 0.68 bc (±0.04) | +2.02 | 0.24 a (±0.03) | −0.31 | 0.083 ab (±0.00) | −14.42 | ||
CF | 0.68 bc (±0.03) | +3.06 | 0.24 a (±0.03) | −0.45 | 0.073 ab (±0.00) | −24.49 | ||
+I | −CF | 0.69 ab (±0.03) | +4.57 | 0.24 a (±0.02) | −0.62 | 0.067 b (±0.00) | −30.93 | |
½CF | 0.71 a (±0.05) | +7.20 | 0.24 a (±0.03) | −0.87 | 0.045 b (±0.00) | −53.61 | ||
CF | 0.69 ab (±0.04) | +3.93 | 0.24 a (±0.02) | −0.34 | 0.065 b (±0.00) | −32.99 | ||
Salinity stress | I | −CF | 0.66 c (±0.04) | - | 0.24 a (±0.02) | - | 0.097 a (±0.00) | - |
½CF | 0.69 bc (±0.05) | +3.38 | 0.23 ab (±0.03) | −2.55 | 0.081 ab (±0.00) | −16.83 | ||
CF | 0.70 bc (±0.04) | +4.98 | 0.23 ab (±0.03) | −2.94 | 0.071 b (±0.00) | −26.72 | ||
+I | −CF | 0.71 ab (±0.03) | +6.58 | 0.23 ab (±0.01) | −5.37 | 0.066 b (±0.00) | −31.96 | |
½CF | 0.73 a (±0.05) | +10.59 | 0.22 bc (±0.02) | −8.32 | 0.047 c (±0.00) | −51.82 | ||
CF | 0.72 ab (±0.03) | +7.97 | 0.21 c (±0.02) | −10.09 | 0.068 b (±0.00) | −29.66 |
Experiment | PGPB Inoculation | Chemicals | NPQ (±SD) | qCN (±SD) | qTV (±SD) | qTQ (±SD) | PQ (±SD) |
---|---|---|---|---|---|---|---|
Non-stress | I | −CF | 0.04 a (±0.00) | 0.04 a (±0.00) | 0.93 c (±0.09) | 0.74 b (±0.04) | 2.81 b (±0.14) |
½CF | 0.02 b (±0.00) | 0.02 b (±0.00) | 0.95 ab (±0.08) | 0.75 ab (±0.06) | 2.95 ab (±0.19) | ||
CF | 0.02 b (±0.00) | 0.02 b (±0.00) | 0.94 bc (±0.07) | 0.75 ab (±0.05) | 3.03 ab (±0.17) | ||
+I | −CF | 0.03 b (±0.00) | 0.03 ab (±0.00) | 0.95 ab (±0.010) | 0.76 a (±0.04) | 3.15 a (±0.23) | |
½CF | 0.02 b (±0.00) | 0.02 b (±0.00) | 0.95 ab (±0.05) | 0.76 a (±0.08) | 3.16 a (±0.24) | ||
CF | 0.03 b (±0.00) | 0.03 ab (±0.00) | 0.96 a (±0.06) | 0.76 a (±0.04) | 3.11 ab (±0.14) | ||
Drought stress | I | −CF | 0.17 ab (±0.02) | 0.15 a (±0.02) | 0.91 c (±0.08) | 0.71 c (±0.05) | 2.30 b (±0.16) |
½CF | 0.12 c (±0.00) | 0.11 b (±0.01) | 0.94 ab (±0.04) | 0.71 c (±0.06) | 2.34 b (±0.17) | ||
CF | 0.12 c (±0.01) | 0.11 b (±0.01) | 0.92 bc (±0.07) | 0.72 bc (±0.07) | 2.44 b (±0.21) | ||
+I | −CF | 0.15 a-c (±0.02) | 0.13 ab (±0.01) | 0.94 ab (±0.06) | 0.73 b (±0.04) | 2.62 ab (±0.12) | |
½CF | 0.18 a (±0.02) | 0.15 a (±0.2) | 0.95 a (±0.09) | 0.75 a (±0.07) | 2.90 a (±0.18) | ||
CF | 0.13 bc (±0.01) | 0.11 b (±0.01) | 0.96 a (±0.06) | 0.73 b (±0.05) | 2.54 ab (±0.16) | ||
Salinity stress | I | −CF | 0.17 a (±0.03) | 0.14 a (±0.02) | 0.91 b (±0.09) | 0.71 b (±0.07) | 2.36 c (±0.16) |
½CF | 0.12 bc (±0.02) | 0.11 b (±0.01) | 0.95 a (±0.06) | 0.74 ab (±0.06) | 2.62 bc (±0.12) | ||
CF | 0.09 d (±0.01) | 0.08 c (±0.01) | 0.94 ab (±0.04) | 0.74 ab (±0.07) | 2.67 b (±0.19) | ||
+I | −CF | 0.13 b (±0.02) | 0.11 b (±0.01) | 0.95 a (±0.09) | 0.74 ab (±0.04) | 2.71 b (±0.20) | |
½CF | 0.08 d (±0.00) | 0.08 c (±0.01) | 0.96 a (±0.06) | 0.75 a (±0.08) | 3.00 a (±0.17) | ||
CF | 0.11 c (±0.01) | 0.10 b (±0.01) | 0.95 a (±0.07) | 0.75 a (±0.06) | 2.88 ab (±0.21) |
Experiment | PGPB Inoculation | Chemicals | Plant Height (±SD) | Root Weight (±SD) | Chla + b (±SD) | Chla/b (±SD) |
---|---|---|---|---|---|---|
cm | g/plant | µg cm−2 | ||||
Non-stress | I | −CF | 61.00 cd (±7.11) | 0.41 c (±0.05) | 11.66 b (±1.09) | 3.68 a (±0.84) |
½CF | 64.00 bc (±5.56) | 0.52 ab (±0.07) | 13.71 a (±0.88) | 03.41 a (±0.46) | ||
CF | 68.33 ab (±6.12) | 0.48 b (±0.06) | 14.24 a (±1.17) | 3.59 a (±0.45) | ||
+I | −CF | 71.00 a (±0.8.01) | 0.55 a (±0.05) | 13.49 a (±0.90) | 3.84 a (±0.34) | |
½CF | 69.33 ab (±6.05) | 0.50 b (±0.06) | 14.72 a (±1.05) | 4.33 a (±0.18) | ||
CF | 68.33 ab (±7.17) | 0.52 ab (±0.07) | 14.71 a (±1.26) | 4.16 a (±0.54) | ||
Drought stress | I | −CF | 46.33 c (±3.68) | 0.57 bc (±0.05) | 8.22 c (±1.18) | 2.69 a (±0.45) |
½CF | 54.00 b (±4.46) | 0.55 bc (±0.06) | 8.68 bc (±1.04) | 3.07 a (±0.36) | ||
CF | 54.00 b (±5.07) | 0.64 ab (±0.08) | 9.89 b (±1.47) | 2.89 a (±0.67) | ||
+I | −CF | 59.00 a (±6.58) | 0.60 b (±0.06) | 11.65 a (±0.56) | 2.51 a (±0.24) | |
½CF | 55.33 b (±4.46) | 0.60 b (±0.07) | 11.30 a (±1.09) | 2.71 a (±0.57) | ||
CF | 52.00 b (±6.74) | 0.67 a (±0.05) | 12.52 a (±0.86) | 2.41 a (±0.35) | ||
Salinity stress | I | −CF | 51.67 d (±0.03) | 0.34 c (±0.05) | 9.58 c (±0.79) | 2.37 a (±0.37) |
½CF | 55.33 cd (±6.22) | 0.39 b (±0.03) | 10.27 b (±1.10) | 2.84 a (±0.16) | ||
CF | 59.33 c (±5.61) | 0.36 bc (±0.05) | 11.17 ab (±0.94) | 2.47 a (±0.37) | ||
+I | −CF | 64.67 ab (±7.31) | 0.41 ab (±0.05) | 10.32 b (±0.59) | 2.59 a (±0.44) | |
½CF | 59.33 c (±5.50) | 0.44 a (±0.06) | 11.01 ab (±0.96) | 3.06 a (±0.48) | ||
CF | 68.67 a (±7.12) | 0.40 ab (±0.05) | 12.40 a (±1.07) | 2.46 a (±0.26) |
Variable | r | ||
---|---|---|---|
Non-Stress | Drought | Salinity | |
P | 0.42 * | 0.39 * | 0.47 * |
L | −0.37 NS | −0.20 NS | −0.33 NS |
D | −0.09 NS | −0.18 NS | −0.34 NS |
NPQ | −0.24 NS | −0.08 NS | −0.43 * |
qCN | −0.20 NS | 0.19 NS | −0.15 NS |
qTV | 0.09 NS | 0.39 * | 0.39 * |
qTQ | 0.41 * | 0.47 * | 0.40 * |
PQ | 0.40 * | 0.44 * | 0.39 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaghoubi Khanghahi, M.; Strafella, S.; Crecchio, C. Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses. Appl. Sci. 2020, 10, 5031. https://doi.org/10.3390/app10155031
Yaghoubi Khanghahi M, Strafella S, Crecchio C. Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses. Applied Sciences. 2020; 10(15):5031. https://doi.org/10.3390/app10155031
Chicago/Turabian StyleYaghoubi Khanghahi, Mohammad, Sabrina Strafella, and Carmine Crecchio. 2020. "Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses" Applied Sciences 10, no. 15: 5031. https://doi.org/10.3390/app10155031
APA StyleYaghoubi Khanghahi, M., Strafella, S., & Crecchio, C. (2020). Changes in Photo-Protective Energy Dissipation of Photosystem II in Response to Beneficial Bacteria Consortium in Durum Wheat under Drought and Salinity Stresses. Applied Sciences, 10(15), 5031. https://doi.org/10.3390/app10155031