Agricultural Evolution: Process, Pattern and Water Resource Effect
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preprocessing
2.3. Indicators/Methods for Assesing the Land Use and Land Cover Changes
2.3.1. Spatiotemporal Changes
2.3.2. Landscape Pattern
2.3.3. Change Trajectory
3. Results
3.1. Spatiotemporal Changes of Cultivated Land
3.1.1. Cultivated Land Evolution Process
3.1.2. Change Area and Rate
3.1.3. Landscape Pattern
3.1.4. Changes in Gravity Center
3.2. Land Use Changes Related to Cultivated Land
3.2.1. Change Trajectory
3.2.2. Cumulative Transition Probability
4. Discussion
4.1. Cultivated Land Changes Greatly Affect Landscape Patterns
4.2. Driving Force of Cultivated Land Changes
4.3. Water Resource Effect Caused by Cultivated Land Changes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wingate, V.R.; Phinn, S.R.; Kuhn, N.; Bloemertz, L.; Dhanjal-Adams, K.L. Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data. Remote Sens. 2016, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Daunt, A.B.P.; Silva, T.S.F. Beyond the park and city dichotomy: Land use and land cover change in the northern coast of Sao Paulo (Brazil). Landsc. Urban. Plan. 2019, 189, 352–361. [Google Scholar] [CrossRef]
- Ruelland, D.; Tribotte, A.; Puech, C.; Dieulin, C. Comparison of methods for LUCC monitoring over 50 years from aerial photographs and satellite images in a Sahelian catchment. Int. J. Remote Sens. 2011, 32, 1747–1777. [Google Scholar] [CrossRef]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Villegas, J.C. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the Colombian Andes. Sci. Total. Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef]
- Gurjar, S.K.; Tare, V. Estimating long-term LULC changes in an agriculture-dominated basin using CORONA (1970) and LISS IV (2013-14) satellite images: A case study of Ramganga River, India. Environ. Monit. Assess. 2019, 191, 217. [Google Scholar] [CrossRef]
- Frolking, S.; Qiu, J.; Boles, S.; Xiao, X.; Liu, J.; Zhuang, Y.; Li, C.; Qin, X. Combining remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China. Glob. Biogeochem. Cycles 2002, 16, 38-1–38-10. [Google Scholar] [CrossRef] [Green Version]
- Song, D.X.; Huang, C.Q.; Sexton, J.O.; Channan, S.; Feng, M.; Townshend, J.R. Use of Landsat and Corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. Isprs. J. Photogramm. 2015, 103, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Tappan, G.G.; Hadj, A.; Wood, E.C.; Lietzow, R.W. Use of Argon, Corona, and Landsat imagery to assess 30 years of land resource changes in west-central Senegal. Photogramm. Eng. Remote Sens. 2000, 66, 727–735. [Google Scholar]
- Mottet, A.; Ladet, S.; Coqué, N.; Gibon, A. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agric. Ecosyst. Environ. 2006, 114, 296–310. [Google Scholar] [CrossRef]
- Grădinaru, S.R.; Fan, P.; Iojă, C.I.; Niță, M.R.; Suditu, B.; Hersperger, A.M. Impact of national policies on patterns of built-up development: An assessment over three decades. Land Use Policy 2020, 94, 104510. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.Q.; Sun, P.L.; Zhou, G.Y.; Liu, C.; Lu, L.H.; Xiang, Y.; Wang, H. Land use/land cover changes and its impact on ecosystem services in ecologically fragile zone: A case study of Zhangjiakou City, Hebei Province, China. Ecol. Indic. 2019, 104, 604–614. [Google Scholar] [CrossRef]
- Silveira, E.M.D.; de Mello, J.M.; Acerbi, F.W.; de Carvalho, L.M.T. Object-based land-cover change detection applied to Brazilian seasonal savannahs using geostatistical features. Int. J. Remote Sens. 2018, 39, 2597–2619. [Google Scholar] [CrossRef]
- Xu, D.; Li, C.; Song, X.; Ren, H. The dynamics of desertification in the farming-pastoral region of North China over the past 10years and their relationship to climate change and human activity. Catena 2014, 123, 11–22. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Wang, D.; Yang, J.; Xing, X. Spatiotemporal Changes of Farming-Pastoral Ecotone in Northern China, 1954–2005: A Case Study in Zhenlai County, Jilin Province. Sustainability 2014, 7, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.Y.; Li, X.Y.; Shi, P.J.; Gao, S.Y.; Wang, J.H.; Ta, W.Q.; Song, Y.; Liu, M.X.; Wang, Z.; Xiao, B.L. Wind erodibility of major soils in the farming-pastoral ecotone of China. J. Arid Environ. 2007, 68, 611–623. [Google Scholar] [CrossRef]
- Liu, J.-h.; Gao, J.-x.; Lv, S.-H.; Han, Y.-w.; Nie, Y.-h. Shifting farming–pastoral ecotone in China under climate and land use changes. J. Arid Environ. 2011, 75, 298–308. [Google Scholar] [CrossRef]
- Wang, Z.; Song, K.; Zhang, B.; Liu, D.; Ren, C.; Luo, L.; Yang, T.; Huang, N.; Hu, L.; Yang, H.; et al. Shrinkage and fragmentation of grasslands in the West Songnen Plain, China. Agric. Ecosyst. Environ. 2009, 129, 315–324. [Google Scholar] [CrossRef]
- Wang, L.; Seki, K.; Miyazaki, T.; Ishihama, Y. The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy Water Environ. 2009, 7, 259–270. [Google Scholar] [CrossRef]
- Gepts, P.; Famula, T.R.; Bettinger, R.L.; Brush, S.B.; Damania, A.B.; McGuire, P.E.; Qualset, C.O. Biodiversity in Agriculture: Domestication, Evolution, and Sustainability; Cambridge University Press: New York, NY, USA, 2012; p. 606. [Google Scholar]
- Woodward, G.O. Ecosystems in a Human-Modified Landscape: A European Perspective; Academic Press: Waltham, MA, USA, 2011; p. 374. [Google Scholar]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S. Historical Arable Land Change in an Eco-Fragile Area: A Case Study in Zhenlai County, Northeastern China. Sustainability 2018, 10, 3940. [Google Scholar] [CrossRef] [Green Version]
- Ferng, J.-J. Local sustainable yield and embodied resources in ecological footprint analysis—A case study on the required paddy field in Taiwan. Ecol. Econ. 2005, 53, 415–430. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Wu, J.; Qi, J.; Salas, W.A. Mapping paddy rice with multitemporal ALOS/PALSAR imagery in southeast China. Int. J. Remote Sens. 2009, 30, 6301–6315. [Google Scholar] [CrossRef]
- Liu, X.; Dong, G.; Wang, X.; Xue, Z.; Jiang, M.; Lu, X.; Zhang, Y. Characterizing the spatial pattern of marshlands in the Sanjiang Plain, Northeast China. Ecol. Eng. 2013, 53, 335–342. [Google Scholar] [CrossRef]
- Yan, F.Q.; Liu, X.T.; Chen, J.; Yu, L.X.; Yang, C.B.; Chang, L.P.; Yang, J.C.; Zhang, S.W. China’s Wetland Databases Based on Remote Sensing Technology. Chin. Geogr. Sci. 2017, 27, 374–388. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Zhang, G.; Li, L.; Jin, C.; Zhou, Y.; Wang, J.; Biradar, C.; et al. Tracking the dynamics of paddy rice planting area in 1986–2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160, 99–113. [Google Scholar] [CrossRef]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Frolking, S.; Li, C.; Salas, W.; Moore, B. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens. Environ. 2005, 95, 480–492. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, H.; Ren, W.; Tao, B.; Lu, C.; Yang, J.; Banger, K.; Pan, S. Methane emissions from global rice fields: Magnitude, spatiotemporal patterns, and environmental controls. Glob. Biogeochem. Cycles 2016, 30, 1246–1263. [Google Scholar] [CrossRef] [Green Version]
- Gashaw, T.; Tulu, T.; Argaw, M.; Worqlul, A.W. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Sci. Total Environ. 2018, 619–620, 1394–1408. [Google Scholar] [CrossRef]
- Schilling, K.E.; Jha, M.K.; Zhang, Y.K.; Gassman, P.W.; Wolter, C.F. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resour. Res. 2008, 44, 1–12. [Google Scholar] [CrossRef]
- Win, K.T.; Nonaka, R.; Toyota, K.; Motobayashi, T.; Hosomi, M. Effects of option mitigating ammonia volatilization on CH4 and N2O emissions from a paddy field fertilized with anaerobically digested cattle slurry. Biol. Fertil. Soils 2010, 46, 589–595. [Google Scholar] [CrossRef]
- Zhang, A.F.; Cui, L.Q.; Pan, G.X.; Li, L.Q.; Hussain, Q.; Zhang, X.H.; Zheng, J.W.; Crowley, D. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric. Ecosyst. Environ. 2010, 139, 469–475. [Google Scholar]
- Huang, Y.A.O.; Sun, W.; Zhang, W.E.N.; Yu, Y.; Su, Y.; Song, C. Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob. Chang. Biol. 2010, 16, 680–695. [Google Scholar] [CrossRef]
- Gilbert, M.; Golding, N.; Zhou, H.; Wint, G.R.W.; Robinson, T.P.; Tatem, A.J.; Lai, S.; Zhou, S.; Jiang, H.; Guo, D.; et al. Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia. Nat. Commun. 2014, 5, 4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Natuhara, Y. Ecosystem services by paddy fields as substitutes of natural wetlands in Japan. Ecol. Eng. 2013, 56, 97–106. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, S.; Su, F. Variations in ecosystem services in response to paddy expansion in the Sanjiang Plain, Northeast China. Int. J. Agric. Sustain. 2019, 17, 158–171. [Google Scholar] [CrossRef]
- Yan, F.; Yu, L.; Yang, C.; Zhang, S. Paddy Field Expansion and Aggregation Since the Mid-1950s in a Cold Region and Its Possible Causes. Remote Sens. 2018, 10, 384. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.; Wang, Z.; Liu, D.; Li, L.; Ren, C.; Tang, X.; Jia, M.; Liu, C. Assessment of habitat suitability for waterbirds in the West Songnen Plain, China, using remote sensing and GIS. Ecol. Eng. 2013, 55, 94–100. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, N.; Luo, L.; Li, X.; Ren, C.; Song, K.; Chen, J.M. Shrinkage and fragmentation of marshes in the West Songnen Plain, China, from 1954 to 2008 and its possible causes. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 477–486. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Song, K.; Zhang, B.; Hu, L.; Huang, N.; Zhang, S.; Luo, L.; Zhang, C.; Jiang, G. Land use/cover changes and environmental consequences in Songnen Plain, Northeast China. Chin. Geogr. Sci. 2009, 19, 299–305. [Google Scholar] [CrossRef]
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, S. Ecosystem service decline in response to wetland loss in the Sanjiang Plain, Northeast China. Ecol. Eng. 2019, 130, 117–121. [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Li, L.; Tedesco, L.; Li, F.; Jin, C.; Du, J. Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng-Xingkai Plain, China. J. Environ. Manag. 2012, 111, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Qian, C.; Deng, A.; Zhang, W. Progressive and active adaptations of cropping system to climate change in Northeast China. Eur. J. Agron. 2012, 38, 94–103. [Google Scholar] [CrossRef]
- Luo, L.; Mao, D.H.; Wang, Z.M.; Zhang, B.; Ren, C.; Jia, M.M. Analysis of dynamics and driving forces of lakes and reservoirs in western Songnen Plain. Trans. Chin. Soc. Agric. Eng. 2015, 31, 285–291. [Google Scholar]
- Wu, W.J.; Xia, T.; Hu, Q. Study on mutual transformation spatial and temporal pattern and its water resources effect between paddy field and dry land in Heilongjiang Province from 1980 to 2015. Chin. J. Agric. Resour. Reg. Plan. 2019, 40, 142–151. [Google Scholar]
- Chu, Z.; Ma, L.J.; Ma, J.; Ma, Y. Change of cultivated land in Songnen Plain during 1980–2000 and its impacts on drought. J. Nat. Disasters 2013, 22, 109–115. [Google Scholar]
- Luo, X.Z.; Zhu, T.; Sun, G.Y. Influence of human activities on ecological environment of the Songnen Plain. Chin. Popul. Resour. Environ. 2002, 12, 94–99. [Google Scholar]
- Li, X.Y.; Wang, Z.M.; Song, K.S.; Zhang, B.; Liu, D.W.; Guo, Z.X. Assessment for Salinized Wasteland Expansion and Land Use Change Using GIS and Remote Sensing in the West Part of Northeast China. Environ. Monit. Assess. 2007, 131, 421–437. [Google Scholar] [CrossRef]
Time Periods | Cultivated Land | Paddy | Dry Farmland | |||
---|---|---|---|---|---|---|
CA(ha/y) | CR(%/y) | CA(ha/y) | CR(%/y) | CA(ha/y) | CR(%/y) | |
1990−2000 | 48,032.89 | 1.51 | 11,543.22 | 5.72 | 36,489.67 | 1.23 |
2000−2010 | 11,762.21 | 0.32 | 3905.64 | 1.23 | 7856.57 | 0.24 |
2010−2015 | 6764.26 | 0.18 | 22,575.24 | 6.34 | −15,810.98 | −0.46 |
Type | Time | PD | LPI | MA |
---|---|---|---|---|
Paddy | 1990 | 0.0526 | 0.3154 | 54.0416 |
2000 | 0.0061 | 0.673 | 734.314 | |
2010 | 0.0069 | 0.6741 | 722.6863 | |
2015 | 0.0082 | 0.6691 | 804.7028 | |
Dry farmland | 1990 | 0.1948 | 9.2081 | 215.1724 |
2000 | 0.0331 | 12.9321 | 1419.6731 | |
2010 | 0.0332 | 10.4613 | 1450.6182 | |
2015 | 0.0367 | 10.3458 | 1282.0991 |
Type | Time | COHESION | SPLIT | AI |
---|---|---|---|---|
Paddy | 1990 | 99.3257 | 36,869.8887 | 96.1885 |
2000 | 99.5731 | 12,089.1395 | 97.7839 | |
2010 | 99.5598 | 12,070.067 | 97.8907 | |
2015 | 99.6665 | 5762.8674 | 97.9792 | |
Dry farmland | 1990 | 99.9077 | 70.1782 | 97.3831 |
2000 | 99.9354 | 44.0645 | 97.9354 | |
2010 | 99.93 | 52.7664 | 97.9605 | |
2015 | 99.9274 | 55.9848 | 97.9052 |
Type | Time | Longitude (E) | Latitude (N) |
---|---|---|---|
Paddy | 1990 | 124.01 | 45.97 |
2000 | 123.96 | 45.9 | |
2010 | 123.97 | 46.02 | |
2015 | 123.88 | 46.11 | |
Dry farmland | 1990 | 123.81 | 45.61 |
2000 | 123.75 | 45.61 | |
2010 | 123.74 | 45.62 | |
2015 | 123.75 | 45.6 |
Type | Time | Distance (km) | Speed (km/a) |
---|---|---|---|
1990−2000 | 8.69 | 0.87 | |
Paddy | 2000−2010 | 13.37 | 1.34 |
2010−2015 | 12.18 | 2.44 | |
1990−2000 | 1.56 | 0.16 | |
Dry farmland | 2000−2010 | 4.04 | 0.40 |
2010−2015 | 2.36 | 0.47 |
Type | Unchanged | One-Step | Two-Step | Three-Step |
---|---|---|---|---|
Paddy | 30.32% | 51.87% | 17.07% | 0.14% |
Dry farmland | 74.46% | 22.26% | 2.58% | 0.25% |
Type | Paddy | Dry | Forest | Grassland | Water | Settlement | Marsh | Unused | Total |
---|---|---|---|---|---|---|---|---|---|
Paddy | - | 0.75 | 0.00 | 0.05 | 0.01 | 0.02 | 0.04 | 0.00 | 0.89 |
Dry farmland | 2.45 | - | 1.35 | 0.34 | 0.06 | 0.21 | 0.25 | 0.07 | 4.73 |
Forest | 0.01 | 0.79 | - | 0.09 | 0.00 | 0.01 | 0.03 | 0.01 | 0.94 |
Grassland | 0.68 | 6.04 | 0.85 | - | 0.08 | 0.06 | 0.86 | 1.15 | 9.73 |
Water | 0.05 | 0.24 | 0.01 | 0.27 | - | 0.00 | 1.17 | 0.74 | 2.49 |
Settlement | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | - | 0.00 | 0.00 | 0.01 |
Marsh | 1.31 | 0.87 | 0.01 | 0.88 | 0.33 | 0.01 | - | 0.44 | 3.86 |
Unused | 0.15 | 1.16 | 0.19 | 0.95 | 0.17 | 0.06 | 0.82 | - | 3.51 |
Total | 4.65 | 9.86 | 2.42 | 2.58 | 0.66 | 0.38 | 3.18 | 2.42 |
Type | Paddy Field | Dry Farmland | Total |
---|---|---|---|
1990 | 15,1328.68 | 37,7720.29 | 52,9048.97 |
2000 | 23,7902.81 | 42,4062.18 | 66,1964.99 |
2010 | 26,7195.10 | 43,4040.03 | 70,1235.12 |
2015 | 35,1852.24 | 42,4000.05 | 77,5852.29 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, F.; Ning, J.; Su, F. Agricultural Evolution: Process, Pattern and Water Resource Effect. Appl. Sci. 2020, 10, 5065. https://doi.org/10.3390/app10155065
Yan F, Ning J, Su F. Agricultural Evolution: Process, Pattern and Water Resource Effect. Applied Sciences. 2020; 10(15):5065. https://doi.org/10.3390/app10155065
Chicago/Turabian StyleYan, Fengqin, Jia Ning, and Fenzhen Su. 2020. "Agricultural Evolution: Process, Pattern and Water Resource Effect" Applied Sciences 10, no. 15: 5065. https://doi.org/10.3390/app10155065
APA StyleYan, F., Ning, J., & Su, F. (2020). Agricultural Evolution: Process, Pattern and Water Resource Effect. Applied Sciences, 10(15), 5065. https://doi.org/10.3390/app10155065