Intra- and Interobserver Reliability Comparison of Clinical Gait Analysis Data between Two Gait Laboratories
Abstract
:Featured Application
Abstract
1. Introduction
- (1)
- Intraobserver reliability of CGA data for the lower extremity obtained for the same cohort of subjects and captured at one laboratory will be good-to-excellent, whereas interobserver reliability will be fair-to-good.
- (2)
- CGA data for the lower extremity obtained for the same cohort of subjects, captured at two separate laboratories by the same observers, using different hardware and software systems, will be equivalent.
2. Materials and Methods
2.1. Subjects
2.2. Measurement Set-Up
2.3. Measurement Protocol
- Interobserver Reliability: The reliability of the two observers, using the same data set, was assessed using separate analysis software (Observer 1: GL1 (Workstation); Observer 2: GL2 (Nexus)).
- Intraobserver Reliability: The reliability of the same data set among the same observer was tested. This assessment was performed with a time interval of 12 months between analyses using the same software (Workstation). The CGA data for this assessment were collected at the GL2 site.
- Between-Laboratory Intraobserver Reliability: To compare the effect of laboratory environment and instrumentation while excluding observer-dependent influences, CGA data collected at both laboratories were analyzed by a single observer using the same analysis software.
2.4. Statistics
- For interobserver reliability, a single measure intraclass correlation coefficient (ICC) was calculated. The number of measures (k) was 60 (n = 20 barefoot trials from three subjects).
- For intraobserver reliability, an average measure ICC was calculated. The number of measures (k) was 60.
- To assess between-laboratory intraobserver reliability, an average measure ICC was calculated and again referenced to the same ICC value classification [21]. The ICC indicated excellent reliability if the value was above 0.75, fair-to-good reliability between 0.40 and 0.75 and poor reliability when less than 0.40. A two-way mixed-effects model (definition: absolute agreement) was used for all calculations. For all ICC values, 95% confidence intervals were reported.
- To estimate experimental errors of a joint angle, the standard error was calculated (for intra- (σrepeated), inter- (σobserver) and between-laboratory intraobserver reliability (σsess(lab))) as described by Schwartz et al. [10], as well as the magnitude of the interobserver error and its ratio to intra-subject error r (Equations 2–4).r = σrepeated/σtrialr = σobserver/σtrialr = σsesss(lab)/σtrial
- A scatter-plot technique suggested by Bland and Altman [22] was used to assess interchangeability (equivalence) of CGA data between laboratories. Calculated differences for joint angles were plotted against their average value for each subject. The interchangeability of CGA data was tested by a bounding criterion defined as the mean ± two standard deviations of the measured differences (approximately 95% of all measured values).
- To evaluate the variability within and between subjects, the standard error of measurement (SEM) was calculated in conjunction with the ICCs, using the following equation from Portney and Watkins [23]:
- Mean differences for multicenter comparisons were tested using variance analysis. A one-factor, univariate general linear model (GLM; dependent variable: hip flexion during stance; independent variable: CGA center; covariate: walking speed) was performed. Prior to inference statistical analyses, all variables were tested for normal distribution (Kolmogorov–Smirnov test). To estimate practical relevance and to quantify the differences between GL1 and GL2, effect sizes (partial eta squared, ηp2 [25,26]) were calculated for the main effects (ηp2) and the mean differences divided by the pooled standard deviations (d). To evaluate effect sizes, d or ηp2 were classified, with d ≥ 0.2, d ≥ 0.5, d ≥ 0.8 or ηp2 ≥ 0.01, ηp2 ≥ 0.06, ηp2 ≥ 0.14 indicating small, medium or large effects, respectively [27]. Level of significance was adjusted to p ≤ 0.002 (0.05/31 = 0.002) for multiple tests by means of a Bonferroni correction.
3. Results
3.1. Interobserver Reliability
3.2. Intraobserver Reliability
3.3. Between-Laboratory Intraobserver Reliability
3.4. Variance Analysis
3.5. Scatter-Plot Technique Suggested by Bland and Altman [22]
3.6. Joint-Related Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Age [years] | Body Weight [kg] | Body Height [cm] | Body Mass Index [kg∙m-2] | |
---|---|---|---|---|
Subject 1 | 29 | 59 | 167 | 21 |
Subject 2 | 37 | 83 | 178 | 26 |
Subject 3 | 34 | 90 | 185 | 26 |
Mean | 33.3 | 77.3 | 177 | 24.3 |
SD | 4.04 | 16.3 | 9.07 | 2.89 |
Parameter | Intraobserver | Interobserver | ||||
---|---|---|---|---|---|---|
Exam 1 | Exam 2 | SEM | Observer 1 | Observer 2 | SEM | |
Hip (degree) | ||||||
Flexion ST | 38.2 ± 1.73 | 38.1 ± 1.68 | 0 | 38.1 ± 1.68 | 38.1 ± 1.69 | 0.29 |
Extension ST | -6.58 ± 3.68 | -6.57 ± 3.67 | 0 | -6.57 ± 3.67 | -6.24 ± 4.49 | 2.00 |
Flexion SW | 37.6 ± 1.62 | 37.6 ± 1.58 | 0 | 37.6 ± 1.58 | 37.7 ± 1.61 | 0.16 |
Adduction ST | 6.69 ± 3.71 | 6.71 ± 3.72 | 0 | 6.71 ± 3.72 | 6.53 ± 3.74 | 0.53 |
Abduction SW | -7.01 ± 1.38 | -7.02 ± 1.37 | 0 | -7.02 ± 1.37 | -6.96 ± 1.45 | 0.37 |
Hip (% gait cycle) | ||||||
Flexion ST | 3.55 ± 3.19 | 3.45 ± 3.17 | 0 | 3.45 ± 3.17 | 3.73 ± 3.38 | 0.66 |
Extension ST | 51.0 ± 1.17 | 50.7 ± 1.10 | 0.32 | 50.7 ± 1.10 | 51.0 ± 1.13 | 0.49 |
Flexion SW | 86.6 ± 3.05 | 86.6 ± 3.94 | 1.44 | 86.6 ± 3.94 | 86.2 ± 3.26 | 1.94 |
Adduction ST | 25.2 ± 8.38 | 25.2 ± 8.15 | 0 | 25.2 ± 8.15 | 24.8 ± 7.81 | 1.78 |
Abduction SW | 65.7 ± 3.39 | 65.4 ± 3.20 | 0.33 | 65.4 ± 3.20 | 65.1 ± 3.53 | 0.82 |
Knee (degree) | ||||||
Flexion ST | 27.2 ± 3.03 | 27.1 ± 3.02 | 0 | 27.1 ± 3.02 | 27.1 ± 3.16 | 0.93 |
Extension ST | 7.91 ± 2.39 | 7.96 ± 2.35 | 0 | 7.96 ± 2.35 | 7.86 ± 2.44 | 0 |
Flexion SW | 68.3 ± 2.33 | 68.3 ± 2.36 | 0 | 68.3 ± 2.36 | 67.7 ± 4.58 | 2.53 |
Range of motion | 60.4 ± 2.27 | 60.4 ± 2.27 | 0 | 60.4 ± 2.27 | 59.9 ± 4.48 | 2.61 |
First abduction SW | 8.61 ± 4.03 | 8.62 ± 4.06 | 0 | 8.62 ± 4.06 | 8.44 ± 3.81 | 0.39 |
Adduction SW | 0.44 ± 2.41 | 0.39 ± 2.45 | 0 | 0.39 ± 2.45 | 0.60 ± 2.33 | 0.41 |
Second abduction SW | 5.79 ± 1.58 | 5.86 ± 1.60 | 0 | 5.86 ± 1.60 | 5.75 ± 1.47 | 0.27 |
Knee (% gait cycle) | ||||||
Flexion ST | 11.9 ± 1.88 | 11.8 ± 1.82 | 0.19 | 11.8 ± 1.82 | 11.9 ± 1.69 | 0.61 |
Extension ST | 38.8 ± 1.75 | 38.7 ± 1.72 | 0.25 | 38.7 ± 1.72 | 38.4 ± 1.89 | 0.44 |
Flexion SW | 72.4 ± 0.97 | 72.0 ± 1.03 | 0.33 | 72.0 ± 1.03 | 71.9 ± 1.09 | 0.42 |
First abduction SW | 65.0 ± 3.22 | 64.5 ± 3.01 | 0.54 | 64.5 ± 3.01 | 64.8 ± 2.96 | 1.19 |
Adduction SW | 76.6 ± 2.20 | 76.1 ± 2.23 | 0.31 | 76.1 ± 2.23 | 75.5 ± 3.11 | 1.41 |
Second abduction SW | 86.4 ± 3.31 | 85.8 ± 3.30 | 0.47 | 85.8 ± 3.30 | 85.8 ± 3.78 | 1.06 |
Ankle (degree) | ||||||
Plantarflexion ST | 0.37 ± 1.32 | 1.34 ± 1.11 | 1.07 | 1.34 ± 1.11 | -0.17 ± 1.24 | 1.11 |
Dorsiflexion ST | 16.6 ± 1.11 | 17.5 ± 2.00 | 0.97 | 17.5 ± 2.00 | 16.0 ± 1.68 | 1.34 |
Plantarflexion SW | -8.66 ± 6.08 | -7.68 ± 6.69 | 0.90 | -7.68 ± 6.69 | -9.01 ± 5.64 | 1.63 |
Dorsiflexion SW | 8.92 ± 1.56 | 9.76 ± 2.77 | 0.92 | 9.76 ± 2.77 | 8.45 ± 2.25 | 1.33 |
Ankle (% gait cycle) | ||||||
Plantarflexion ST | 5.35 ± 1.49 | 5.22 ± 1.65 | 0.22 | 5.22 ± 1.65 | 5.57 ± 1.31 | 0.42 |
Dorsiflexion ST | 47.0 ± 1.41 | 46.9 ± 1.27 | 0.30 | 46.9 ± 1.27 | 45.7 ± 4.46 | 2.53 |
Plantarflexion SW | 63.4 ± 1.12 | 63.1 ± 1.21 | 0.33 | 63.1 ± 1.21 | 62.9 ± 1.04 | 0.45 |
Dorsiflexion SW | 87.6 ± 5.16 | 87.7 ± 5.37 | 1.18 | 87.7 ± 5.37 | 85.7 ± 3.81 | 3.25 |
References
- Sander, K.; Rosenbaum, D.; Bohm, H.; Layher, F.; Lindner, T.; Wegener, R.; Wolf, S.I.; Seehaus, F. Instrumented gait and movement analysis of musculoskeletal diseases. Orthopade 2012, 41, 802–819. [Google Scholar] [CrossRef] [PubMed]
- Baker, R. Gait analysis methods in rehabilitation. J. Neuroeng. Rehabil. 2006, 3, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture 2009, 29, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Benedetti, M.G.; Pavan, E.; Frigo, C.; Bettinelli, D.; Rabuffetti, M.; Crenna, P.; Leardini, A. Quantitative comparison of five current protocols in gait analysis. Gait Posture 2008, 28, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Noonan, K.J.; Halliday, S.; Browne, R.; O’Brien, S.; Kayes, K.; Feinberg, J.R. Interobserver variability of gait analysis in patients with cerebral palsy. J. Pediatr. Orthop. 2003, 23, 279–287. [Google Scholar] [CrossRef]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E.; Gainey, J.; Gorton, G.; Cochran, G.V. Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 1989, 7, 849–860. [Google Scholar] [CrossRef]
- Steinwender, G.; Saraph, V.; Scheiber, S.; Zwick, E.B.; Uitz, C.; Hackl, K. Intrasubject repeatability of gait analysis data in normal and spastic children. Clin. Biomech. 2000, 15, 134–139. [Google Scholar] [CrossRef]
- Gorton, G.E., 3rd; Hebert, D.A.; Gannotti, M.E. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture 2009, 29, 398–402. [Google Scholar] [CrossRef]
- Growney, E.; Meglan, D.; Johnson, M.; Cahalan, T.; An, K.-N. Repeated measures of adult normal walking using a video tracking system. Gait Posture 1997, 6, 147–162. [Google Scholar] [CrossRef]
- Schwartz, M.H.; Trost, J.P.; Wervey, R.A. Measurement and management of errors in quantitative gait data. Gait Posture 2004, 20, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Bucknall, V.; Gibbs, S.; Arnold, G.P. Comparison of the kinematic data from three different Vicon systems. Gait Posture. Gait Posture 2008, 28, S33–S34. [Google Scholar] [CrossRef]
- Kolber, M.J.; Beekhuizen, K.; Cheng, M.S.; Fiebert, I.M. The reliability of hand-held dynamometry in measuring isometric strength of the shoulder internal and external rotator musculature using a stabilization device. Physiother. Theory Pract. 2007, 23, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Kolber, M.J.; Hanney, W.J. The reliability and concurrent validity of shoulder mobility measurements using a digital inclinometer and goniometer: A technical report. Int. J. Sports Phys. Ther. 2012, 7, 306–313. [Google Scholar]
- Cools, A.M.; De Wilde, L.; Van Tongel, A.; Ceyssens, C.; Ryckewaert, R.; Cambier, D.C. Measuring shoulder external and internal rotation strength and range of motion: Comprehensive intrarater and interrater reliability study of several testing protocols. J. Shoulder Elbow Surg. 2014, 23, 1454–1461. [Google Scholar] [CrossRef] [PubMed]
- Mullaney, M.J.; McHugh, M.P.; Johnson, C.P.; Tyler, T.F. Reliability of shoulder range of motion comparing a goniometer to a digital level. Physiother. Theory Pract. 2010, 26, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.W.; Corea, C.L.; Beaupre, L. Evaluating change in clinical status: Reliability and measures of agreement for the assessment of glenohumeral range of motion. N. Am. J. Sports Phys. Ther. 2010, 5, 98–110. [Google Scholar]
- May, S.; Littlewood, C.; Bishop, A. Reliability of procedures used in the physical examination of non-specific low back pain: A systematic review. Aust. J. Physiother. 2006, 52, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Wilhelmsen, K.; Strand, L.I.; Nordahl, S.H.G.; Eide, G.E.; Ljunggren, A.E. Psychometric properties of the Vertigo symptom scale: Short form. BMC Ear Nose Throat Disord. 2008, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef]
- Benedetti, M.G.; Catani, F.; Leardini, A.; Pignotti, E.; Giannini, S. Data management in gait analysis for clinical applications. Clin. Biomech. 1998, 13, 204–215. [Google Scholar] [CrossRef]
- Shrout, P.E.; Fleiss, J.L. Intraclass correlations: Uses in assessing rater reliability. Psychol. Bull. 1979, 86, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 1, 307–310. [Google Scholar] [CrossRef]
- Portney, L.G.; Watkins, M.P. Foundations of Clinical Research: Applications to Practice, 3rd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Weir, J.P. Quantifying Test-Retest Reliability Using the Intraclass Correlation Coefficient and the SEM. J. Strength Cond. Res. 2005, 19. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Edu. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Hartmann, A.; Herzog, T.; Drinkmann, A. Psychotherapy of bulimia nervosa: What is effective? A meta-analysis. J. Psychosom. Res. 1992, 36, 159–167. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1998. [Google Scholar]
Parameter | Intraobserver | Interobserver | Between-Laboratory Intraobserver | ||||||
---|---|---|---|---|---|---|---|---|---|
ICC | 95% CI | ICC | 95% CI | ICC | 95% CI | ||||
lower | upper | lower | upper | lower | upper | ||||
Hip (degree) | |||||||||
Flexion ST | 1.00 | 1.00 | 1.00 | 0.97 | 0.95 | 0.98 | 0.60 | 0.10 | 0.80 |
Extension ST | 1.00 | 1.00 | 1.00 | 0.76 | 0.63 | 0.85 | 0.72 | 0.54 | 0.83 |
Flexion SW | 1.00 | 1.00 | 1.00 | 0.99 | 0.97 | 0.99 | 0.71 | 0 | 0.89 |
Adduction ST | 1.00 | 1.00 | 1.00 | 0.98 | 0.97 | 0.99 | 0.88 | 0.55 | 0.95 |
Abduction SW | 1.00 | 1.00 | 1.00 | 0.93 | 0.89 | 0.96 | 0.59 | 0.06 | 0.80 |
Hip (% gait cycle) | |||||||||
Flexion ST | 1.00 | 0.99 | 1.00 | 0.96 | 0.92 | 0.97 | 0.90 | 0.83 | 0.94 |
Extension ST | 0.92 | 0.77 | 0.97 | 0.81 | 0.64 | 0.90 | 0.46 | 0.00 | 0.71 |
Flexion SW | 0.83 | 0.72 | 0.90 | 0.71 | 0.56 | 0.81 | 0.31 | 0.00 | 0.57 |
Adduction ST | 1.00 | 1.00 | 1.00 | 0.95 | 0.92 | 0.97 | 0.78 | 0.63 | 0.87 |
Abduction SW | 0.99 | 0.98 | 0.99 | 0.94 | 0.90 | 0.97 | 0.53 | 0.23 | 0.72 |
Knee (degree) | |||||||||
Flexion ST | 1.00 | 1.00 | 1.00 | 0.91 | 0.86 | 0.95 | 0.57 | 0.08 | 0.78 |
Extension ST | 1.00 | 1.00 | 1.00 | 1.00 | 0.99 | 1.00 | 0.74 | 0.56 | 0.84 |
Flexion SW | 1.00 | 1.00 | 1.00 | 0.47 | 0.25 | 0.65 | 0.82 | 0.70 | 0.89 |
Range of motion | 1.00 | 1.00 | 1.00 | 0.40 | 0.17 | 0.59 | 0.46 | 0.10 | 0.68 |
First abduction SW | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 | 0.99 | 0.00 | 0.00 | 0.35 |
Adduction SW | 1.00 | 1.00 | 1.00 | 0.97 | 0.94 | 0.98 | 0.41 | 0.00 | 0.67 |
Second abduction SW | 1.00 | 1.00 | 1.00 | 0.97 | 0.95 | 0.96 | 0.41 | 0.00 | 0.67 |
Knee (% gait cycle) | |||||||||
Flexion ST | 0.99 | 0.98 | 0.99 | 0.88 | 0.81 | 0.93 | 0.81 | 0.18 | 0.93 |
Extension ST | 0.98 | 0.97 | 0.99 | 0.94 | 0.83 | 0.97 | 0.21 | 0.00 | 0.53 |
Flexion SW | 0.89 | 0.66 | 0.95 | 0.84 | 0.75 | 0.90 | 0.13 | 0.00 | 0.42 |
First abduction SW | 0.97 | 0.93 | 0.98 | 0.84 | 0.74 | 0.90 | 0.48 | 0.12 | 0.69 |
Adduction SW | 0.98 | 0.92 | 0.99 | 0.72 | 0.55 | 0.83 | 0.19 | 0.00 | 0.52 |
Second abduction SW | 0.98 | 0.81 | 1.00 | 0.91 | 0.85 | 0.95 | 0.75 | 0.55 | 0.86 |
Ankle (degree) | |||||||||
Plantarflexion ST | 0.23 | 0.00 | 0.51 | 0.11 | 0 | 0.314 | 0.33 | 0.00 | 0.60 |
Dorsiflexion ST | 0.61 | 0.28 | 0.78 | 0.47 | 0.02 | 0.721 | 0.74 | 0.57 | 0.85 |
Plantarflexion SW | 0.98 | 0.94 | 0.99 | 0.93 | 0.79 | 0.968 | 0.86 | 0.62 | 0.94 |
Dorsiflexion SW | 0.82 | 0.63 | 0.90 | 0.72 | 0.25 | 0.875 | 0.83 | 0.65 | 0.91 |
Ankle (% gait cycle) | |||||||||
Plantarflexion ST | 0.98 | 0.96 | 0.99 | 0.82 | 0.69 | 0.90 | 0.77 | 0.07 | 0.92 |
Dorsiflexion ST | 0.95 | 0.92 | 0.97 | 0.22 | 0.00 | 0.44 | 0.36 | 0.00 | 0.62 |
Plantarflexion SW | 0.92 | 0.82 | 0.96 | 0.84 | 0.75 | 0.90 | 0.27 | 0.00 | 0.55 |
Dorsiflexion SW | 0.95 | 0.92 | 0.97 | 0.50 | 0.26 | 0.68 | 0.45 | 0.06 | 0.68 |
ICC ≥ 0.75 (%) | 94% (29/31) | 71% (22/31) | 29% (9/31) |
Joint | Intraobserver (95% CI) | Interobserver (95% CI) | Between-laboratory Intraobserver (95% CI) |
---|---|---|---|
Hip ∅ ICCmean | 0.97 (0.95–0.99) | 0.90 (0.84–0.94) | 0.65 (0.27–0.81) |
Knee ∅ ICCmean | 0.98 (0.94–0.99) | 0.83 (0.74–0.89) | 0.46 (0.05–0.68) |
Ankle ∅ ICCmean | 0.81 (0.66–0.88) | 0.58 (0.33–0.73) | 0.58 (0.21–0.76) |
∅ ICCtotal | 0.93 (0.87–0.96) | 0.79 (0.67–0.86) | 0.56 (0.16–0.74) |
Analysis of Variance (ICCtotal) | Comparison of all three types of reliability: p < 0.001; ηp2 = 0.533 Intraobserver vs. Interobserver: p < 0.001; ηp2 = 0.399 Intraobserver vs. Between-laboratory intraobserver: p < 0.001; ηp2 = 0.676 Interobserver vs. Between-laboratory intraobserver: p < 0.001; ηp2 = 0.374 |
Parameter | Intraobserver | Interobserver | Between-Laboratory Intraobserver | |||||
---|---|---|---|---|---|---|---|---|
σobserver | r | σrepeated | r | σsess(lab) | r | |||
Joint Angles [degree] | Hip | Flexion ST | 1.2 | 1.0 | 1.3 | 1.0 | 1.6 | 1.4 |
Extension ST | 0.8 | 1.0 | 0.9 | 1.0 | 1.6 | 1.7 | ||
Flexion SW | 0.7 | 1.0 | 0.9 | 1.0 | 1.2 | 1.5 | ||
Adduction ST | 1.0 | 1.0 | 1.2 | 1.0 | 1.5 | 1.6 | ||
Abduction SW | 0.7 | 1.0 | 0.9 | 1.2 | 1.3 | 1.4 | ||
Knee | Flexion ST | 2.1 | 1.0 | 2.4 | 1.0 | 2.3 | 1.2 | |
Extension ST | 1.3 | 1.0 | 1.9 | 1.3 | 1.7 | 1.4 | ||
Flexion SW | 1.1 | 1.0 | 1.8 | 1.4 | 1.6 | 1.5 | ||
Range of motion | 1.6 | 1.0 | 1.8 | 1.0 | 1.7 | 1.1 | ||
First abduction SW | 0.8 | 1.0 | 2.4 | 3.2 | 4.2 | 5.1 | ||
Adduction SW | 1.0 | 1.0 | 1.5 | 1.6 | 3.4 | 3.7 | ||
Second abduction SW | 0.7 | 1.0 | 1.3 | 1.6 | 3.2 | 3.8 | ||
Ankle | Plantarflexion ST | 1.6 | 1.4 | 1.5 | 1.5 | 1.6 | 1.4 | |
Dorsiflexion ST | 1.7 | 1.3 | 1.5 | 1.3 | 1.4 | 1.1 | ||
Plantarflexion SW | 2.5 | 1.1 | 3.8 | 1.7 | 3.6 | 1.5 | ||
Dorsiflexion SW | 1.5 | 1.5 | 1.6 | 1.4 | 1.3 | 1.4 | ||
Time at % Gait Cycle | Hip | Flexion ST | 1.4 | 1.0 | 1.9 | 1.2 | 1.3 | 1.2 |
Extension ST | 0.8 | 1.0 | 0.9 | 1.2 | 1.2 | 1.2 | ||
Flexion SW | 2.9 | 1.0 | 3.2 | 1.0 | 4.2 | 1.1 | ||
Adduction ST | 3.8 | 1.0 | 4.4 | 1.0 | 5.4 | 1.0 | ||
Abduction SW | 1.5 | 1.0 | 2.5 | 1.5 | 5.0 | 1.0 | ||
Knee | Flexion ST | 0.8 | 1.0 | 1.1 | 1.1 | 1.0 | 1.2 | |
Extension ST | 1.4 | 1.0 | 1.7 | 1.1 | 1.4 | 1.1 | ||
Flexion SW | 0.9 | 1.0 | 1.0 | 1.1 | 0.9 | 1.2 | ||
First abduction SW | 2.7 | 1.0 | 3.0 | 1.0 | 2.1 | 1.0 | ||
Adduction SW | 2.0 | 1.0 | 3.1 | 1.0 | 2.4 | 0.9 | ||
Second abduction SW | 1.7 | 1.0 | 3.0 | 1.2 | 2.3 | 0.9 | ||
Ankle | Plantarflexion ST | 1.0 | 1.0 | 1.3 | 1.4 | 1.1 | 1.3 | |
Dorsiflexion ST | 1.0 | 1.0 | 1.2 | 1.2 | 1.2 | 1.0 | ||
Plantarflexion SW | 0.9 | 1.0 | 1.0 | 1.1 | 1.1 | 1.3 | ||
Dorsiflexion SW | 4.2 | 1.0 | 4.4 | 1.1 | 4.8 | 1.1 | ||
Analysis of Variance | Intraobserver vs. Interobserver: p < 0.001; ηp2 = 0.498 Intraobserver vs. Between-Laboratory Intraobserver: p = 0.001; ηp2 = 0.325 Interobserver vs. Between-Laboratory Intraobserver: p = 0.083; ηp2 = 0.097 |
Parameter | GL1 | GL2 | Analysis of Variance | d | SEM | ||||
---|---|---|---|---|---|---|---|---|---|
mean | SD | mean | SD | F | p | ηp2 | |||
Hip (degree) | |||||||||
Flexion ST | 36.5 | 2.79 | 38.1 | 1.68 | 2.44 | 0.121 | 0.02 | 0.72 | 1.41 |
Extension ST | -7.19 | 2.00 | -6.57 | 3.67 | 20.0 | <0.001 | 0.15 | 0.22 | 1.50 |
Flexion SW | 35.9 | 2.34 | 37.6 | 1.58 | 0.03 | 0.855 | 0.00 | 0.87 | 1.06 |
Adduction ST | 5.04 | 3.94 | 6.71 | 3.72 | 3.32 | 0.071 | 0.03 | 0.44 | 1.33 |
Abduction SW | -8.44 | 2.12 | -7.02 | 1.37 | 141 | <0.001 | 0.55 | 0.81 | 1.12 |
Hip (% gait cycle) | |||||||||
Flexion ST | 3.00 | 3.65 | 3.45 | 3.17 | 79.2 | <0.001 | 0.40 | 0.13 | 1.08 |
Extension ST | 52.0 | 1.64 | 50.7 | 1.10 | 35.2 | <0.001 | 0.32 | 0.95 | 1.01 |
Flexion SW | 88.7 | 5.32 | 86.6 | 3.94 | 0.13 | 0.721 | 0.00 | 0.45 | 3.85 |
Adduction ST | 27.1 | 10.4 | 25.2 | 8.15 | 25.7 | <0.001 | 0.18 | 0.21 | 4.35 |
Abduction SW | 67.2 | 8.23 | 65.4 | 3.20 | 0.67 | 0.416 | 0.01 | 0.32 | 3.92 |
Knee (degree) | |||||||||
Flexion ST | 24.7 | 3.30 | 27.1 | 3.02 | 1.62 | 0.206 | 0.01 | 0.76 | 2.07 |
Extension ST | 7.25 | 3.81 | 7.96 | 2.35 | 40.4 | <0.001 | 0.26 | 0.23 | 1.57 |
Flexion SW | 67.9 | 4.49 | 68.3 | 2.36 | 16.0 | <0.001 | 0.12 | 0.12 | 1.45 |
Range of motion | 60.7 | 1.72 | 60.4 | 2.27 | 3.35 | 0.070 | 0.03 | 0.15 | 1.47 |
First abduction SW | 6.33 | 6.77 | 8.62 | 4.06 | 1.90 | 0.171 | 0.02 | 0.42 | 5.42 |
Adduction SW | -0.07 | 7.73 | 0.46 | 2.48 | 9.26 | 0.003 | 0.08 | 0.10 | 3.92 |
Second abduction SW | 4.96 | 7.33 | 5.83 | 1.60 | 0.00 | 0.960 | 0.00 | 0.20 | 3.43 |
Knee (% gait cycle) | |||||||||
Flexion ST | 12.9 | 1.70 | 11.8 | 1.82 | 12.1 | 0.001 | 0.09 | 0.63 | 0.77 |
Extension ST | 39.1 | 1.49 | 38.7 | 1.72 | 0.09 | 0.769 | 0.00 | 0.25 | 1.43 |
Flexion SW | 72.9 | 0.78 | 72.0 | 1.03 | 19.2 | <0.001 | 0.14 | 1.00 | 0.84 |
First abduction SW | 64.5 | 1.80 | 64.5 | 3.01 | 0.11 | 0.740 | 0.00 | 0 | 1.73 |
Adduction SW | 75.1 | 2.21 | 76.2 | 2.24 | 0.80 | 0.374 | 0.01 | 0.49 | 2.00 |
Second abduction SW | 85.3 | 3.52 | 85.7 | 3.37 | 4.45 | 0.035 | 0.04 | 0.12 | 1.72 |
Ankle (degree) | |||||||||
Plantarflexion ST | 0.06 | 2.79 | 1.34 | 1.11 | 39.1 | <0.001 | 0.25 | 0.66 | 1.60 |
Dorsiflexion ST | 18.0 | 2.66 | 17.5 | 2.00 | 3.06 | 0.083 | 0.03 | 0.22 | 1.19 |
Plantarflexion SW | -11.3 | 10.7 | -7.68 | 6.69 | 110 | <0.001 | 0.49 | 0.42 | 3.25 |
Dorsiflexion SW | 8.69 | 2.96 | 9.76 | 2.77 | 9.06 | 0.003 | 0.07 | 0.37 | 1.18 |
Ankle (% gait cycle) | |||||||||
Plantarflexion ST | 6.43 | 1.83 | 5.22 | 1.65 | 12.7 | 0.001 | 0.10 | 0.70 | 0.84 |
Dorsiflexion ST | 47.3 | 1.48 | 46.9 | 1.27 | 0.01 | 0.940 | 0.00 | 0.29 | 1.10 |
Plantarflexion SW | 64.4 | 1.02 | 63.1 | 1.21 | 3.66 | 0.058 | 0.03 | 1.17 | 0.95 |
Dorsiflexion SW | 91.4 | 5.37 | 87.7 | 5.37 | 0.20 | 0.656 | 0.00 | 0.69 | 3.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwesig, R.; Wegener, R.; Hurschler, C.; Laudner, K.; Seehaus, F. Intra- and Interobserver Reliability Comparison of Clinical Gait Analysis Data between Two Gait Laboratories. Appl. Sci. 2020, 10, 5068. https://doi.org/10.3390/app10155068
Schwesig R, Wegener R, Hurschler C, Laudner K, Seehaus F. Intra- and Interobserver Reliability Comparison of Clinical Gait Analysis Data between Two Gait Laboratories. Applied Sciences. 2020; 10(15):5068. https://doi.org/10.3390/app10155068
Chicago/Turabian StyleSchwesig, René, Regina Wegener, Christof Hurschler, Kevin Laudner, and Frank Seehaus. 2020. "Intra- and Interobserver Reliability Comparison of Clinical Gait Analysis Data between Two Gait Laboratories" Applied Sciences 10, no. 15: 5068. https://doi.org/10.3390/app10155068
APA StyleSchwesig, R., Wegener, R., Hurschler, C., Laudner, K., & Seehaus, F. (2020). Intra- and Interobserver Reliability Comparison of Clinical Gait Analysis Data between Two Gait Laboratories. Applied Sciences, 10(15), 5068. https://doi.org/10.3390/app10155068