Humulus lupulus L. as a Natural Source of Functional Biomolecules
Abstract
:1. Introduction
2. Main Components
2.1. Hop Resin
2.2. Hop Oil
2.3. Hop Polyphenols
3. Extraction Techniques
3.1. Conventional Methods
3.2. Emerging Extraction Technologies
3.2.1. Ultrasound-Assisted Extraction (UAE)
3.2.2. Microwave-Assisted Extraction (MAE)
3.2.3. Pressurized Methods
3.2.4. Supercritical Fluid Extraction (SFE)
4. Biological Activities of Hop Compounds
4.1. Antioxidant Activity
4.2. Antimicrobial Activity
4.3. Effects on Specific Diseases
4.3.1. Anti-Inflammatory Activity
4.3.2. Cancer-Related Activities
4.3.3. Other Biological Activities
5. Current Applications of Functional Molecules from Hop
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krottenthaler, M. Hops. In Handbook of Brewing: Processes, Technology, Markets; Eßlinger, H.M., Ed.; WILEY-VCH: Weinheim, Germany, 2009; pp. 85–104. [Google Scholar]
- Alonso-Esteban, J.I.; Pinela, J.; Barros, L.; Ćirić, A.; Soković, M.; Calhelha, R.C.; Torija-Isasa, E.; de Cortes Sánchez-Mata, M.; Ferreira, I.C.F.R. Phenolic composition and antioxidant, antimicrobial and cytotoxic properties of hop (Humulus lupulus L.) Seeds. Ind. Crops Prod. 2019, 134, 154–159. [Google Scholar] [CrossRef]
- Muzykiewicz, A.; Nowak, A.; Zielonka-Brzezicka, J.; Florkowska, K.; Duchnik, W.; Klimowicz, A. Comparison of antioxidant activity of extracts of hop leaves harvested in different years. Herba Pol. 2019, 65, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Moir, M. Hops—A millennium review. J. Am. Soc. Brew. Chem. 2000, 58, 131–146. [Google Scholar] [CrossRef]
- Hrnčič, M.K.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Hop Report for the Harvest Year 2018; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Tardío, J.; De Cortes Sánchez-Mata, M.; Morales, R.; Molina, M.; García-Herrera, P.; Morales, P.; Díez-Marqués, C.; Fernández-Ruiz, V.; Cámara, M.; Pardo-De-Santayana, M.; et al. Ethnobotanical and food composition monographs of selected mediterranean wild edible plants. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; De Cortes Sánchez-Mata, M., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 273–470. [Google Scholar]
- Lorenzo, J.M.; Mousavi Khaneghah, A.; Gavahian, M.; Marszałek, K.; Eş, I.; Munekata, P.E.S.; Ferreira, I.C.F.R.; Barba, F.J. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit. Rev. Food Sci. Nutr. 2019, 59, 2879–2895. [Google Scholar] [CrossRef]
- Zanoli, P.; Zavatti, M. Pharmacognostic and pharmacological profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef]
- Bocquet, L.; Rivière, C.; Dermont, C.; Samaillie, J.; Hilbert, J.-L.; Halama, P.; Siah, A.; Sahpaz, S. Antifungal activity of hop extracts and compounds against the wheat pathogen Zymoseptoria tritici. Ind. Crops Prod. 2018, 122, 290–297. [Google Scholar] [CrossRef]
- Yong, W.K.; Ho, Y.F.; Malek, S.N.A. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells. Pharmacogn. Mag. 2015, 11, S275–S283. [Google Scholar]
- Karabín, M.; Hudcová, T.; Jelínek, L.; Dostálek, P. Biologically Active Compounds from Hops and Prospects for Their Use. Compr. Rev. Food Sci. Food Saf. 2016, 15, 542–567. [Google Scholar] [CrossRef] [Green Version]
- Roehrer, S.; Stork, V.; Ludwig, C.; Minceva, M.; Behr, J. Analyzing bioactive effects of the minor hop compound xanthohumol C on human breast cancer cells using quantitative proteomics. PLoS ONE 2019, 14, e0213469. [Google Scholar] [CrossRef]
- Steenackers, B.; De Cooman, L.; De Vos, D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chem. 2015, 172, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Sanz, V.; Torres, M.D.; López Vilariño, J.M.; Domínguez, H. What is new on the hop extraction? Trends Food Sci. Technol. 2019, 93, 12–22. [Google Scholar] [CrossRef]
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Vogt, O.; Sikora, E.; Ogonowski, J. The effect of selected supercritical CO2 plant extract addition on user properties of shower gels. Polish J. Chem. Technol. 2014, 16, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Kramer, B.; Thielmann, J.; Hickisch, A.; Muranyi, P.; Wunderlich, J.; Hauser, C. Antimicrobial activity of hop extracts against foodborne pathogens for meat applications. J. Appl. Microbiol. 2015, 118, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Nionelli, L.; Pontonio, E.; Gobbetti, M.; Rizzello, C.G. Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int. J. Food Microbiol. 2018, 266, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Jelínek, L.; Karabín, M.; Kotlíková, B.; Hudcová, T.; Dostálek, P. Application of a hop by-product in brewing: Reduction in the level of haze-active prolamines and improved antioxidant properties of the beer. J. Inst. Brew. 2014, 120, 99–104. [Google Scholar] [CrossRef]
- Marriott, R.J. Greener chemistry preparation of traditional: Lavour extracts and molecules. Agro Food Ind. Hi-Tech 2010, 21, 46–48. [Google Scholar]
- Barba, F.J.; Putnik, P.; Bursać Kovačević, D.; Poojary, M.M.; Roohinejad, S.; Lorenzo, J.M.; Koubaa, M. Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. Trends Food Sci. Technol. 2017, 67, 260–270. [Google Scholar] [CrossRef]
- Lakka, A.; Karageorgou, I.; Kaltsa, O.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D. Polyphenol Extraction from Humulus lupulus (Hop) Using a Neoteric Glycerol/L-Alanine Deep Eutectic Solvent: Optimisation, Kinetics and the E ect of Ultrasound-Assisted Pretreatment. AgriEngineering 2019, 1, 30. [Google Scholar] [CrossRef] [Green Version]
- Putnik, P.; Lorenzo, J.; Barba, F.; Roohinejad, S.; Režek Jambrak, A.; Granato, D.; Montesano, D.; Bursać Kovačević, D. Novel food processing and extraction technologies of high-added value compounds from plant materials. Foods 2018, 7, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bursać Kovačević, D.; Maras, M.; Barba, F.J.; Granato, D.; Roohinejad, S.; Mallikarjunan, K.; Montesano, D.; Lorenzo, J.M.; Putnik, P. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chem. 2018, 268, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Abert Vian, M.; Fabiano-Tixier, A.-S.; Nutrizio, M.; Režek Jambrak, A.; Munekata, P.E.S.; Lorenzo, J.M.; Barba, F.J.; Binello, A.; Cravotto, G. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chem. 2020, 22, 2325–2353. [Google Scholar] [CrossRef] [Green Version]
- Gullón, P.; Gullón, B.; Romaní, A.; Rocchetti, G.; Lorenzo, J.M. Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci. Technol. 2020, 101, 182–197. [Google Scholar] [CrossRef]
- Gullón, B.; Lú-Chau, T.A.; Moreira, M.T.; Lema, J.M.; Eibes, G. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends Food Sci. Technol. 2017, 67, 220–235. [Google Scholar] [CrossRef]
- Stevens, R. The Chemistry of Hop Constituents. Chem. Rev. 1967, 67, 19–71. [Google Scholar] [CrossRef]
- Verzele, M. 100 years of hop chemistry and its relevance to brewing. J. Inst. Brew. 1986, 92, 32–48. [Google Scholar] [CrossRef]
- Palamand, S.R.; Aldenhoff, J.M. Bitter tasting compounds of beer. Chemistry and taste properties of some hop resin compounds. J. Agric. Food Chem. 1973, 21, 535–543. [Google Scholar] [CrossRef]
- Hough, J.S.; Briggs, D.E.; Stevens, R.; Young, T.W. Malting and Brewing Science. Volume II Hopped Wort and Beer; Springer Science + Business Media: New York, NY, USA, 1982. [Google Scholar]
- Roberts, T.R.; Wilson, R.J.H. Hops. In Handbook of Brewing; Priest, F.G., Stewart, G.G., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 177–280. [Google Scholar]
- Sharpe, F.R.; Laws, D.R.J. The essential oil of hops a review. J. Inst. Brew. 1981, 87, 96–107. [Google Scholar] [CrossRef]
- Jahnsen, V.J. Complexity of Hop Oil. Nature 1962, 196, 474–475. [Google Scholar] [CrossRef]
- Biendl, M. Hops and Health. Tech. Q. Master Brew. Assoc. Am. 2009, 46, 1–7. [Google Scholar] [CrossRef]
- Taniguchi, Y.; Taniguchi, H.; Yamada, M.; Matsukura, Y.; Koizumi, H.; Furihata, K.; Shindo, K. Analysis of the components of hard resin in hops (Humulus lupulus L.) and structural elucidation of their transformation products formed during the brewing process. J. Agric. Food Chem. 2014, 62, 11602–11612. [Google Scholar] [CrossRef] [PubMed]
- Biendl, M.; Engelhard, B.; Forster, A.; Gahr, A.; Lutz, A.; Mitter, W.; Schmidt, R.; Schönberger, C. Hops: Their Cultivation, Composition and Usage; Fachverlag Hans Carl: Nürnberg, Germany, 2014. [Google Scholar]
- Spreng, S.; Hofmann, T. Activity-Guided Identification of in Vitro Antioxidants in Beer. J. Agric. Food Chem. 2018, 66, 720–731. [Google Scholar] [CrossRef] [PubMed]
- Gresser, A. Properties and Quality. In Handbook of Brewing: Processes, Technology, Markets; Eßlinger, H.M., Ed.; WILEY-VCH: Weinheim, Germany, 2009; pp. 359–397. ISBN 9783527316748. [Google Scholar]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Jeliazkova, E.; Zheljazkov, V.D.; Kačániova, M.; Astatkie, T.; Tekwani, B.L. Sequential elution of essential oil constituents during steam distillation of hops (Humulus lupulus L.) and influence on oil yield and antimicrobial activity. J. Oleo Sci. 2018, 67, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Bartmańska, A.; Wałecka-Zacharska, E.; Tronina, T.; Popłoński, J.; Sordon, S.; Brzezowska, E.; Bania, J.; Huszcza, E. Antimicrobial properties of spent hops extracts, flavonoids isolated therefrom, and their derivatives. Molecules 2018, 23, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prencipe, F.P.; Brighenti, V.; Rodolfi, M.; Mongelli, A.; dall’Asta, C.; Ganino, T.; Bruni, R.; Pellati, F. Development of a new high-performance liquid chromatography method with diode array and electrospray ionization-mass spectrometry detection for the metabolite fingerprinting of bioactive compounds in Humulus lupulus L. J. Chromatogr. A 2014, 1349, 50–59. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Martínez-Patiño, J.C.; Gullón, B.; Romero, I.; Ruiz, E.; Brnčić, M.; Žlabur, J.Š.; Castro, E. Optimization of ultrasound-assisted extraction of biomass from olive trees using response surface methodology. Ultrason. Sonochem. 2019, 51, 487–495. [Google Scholar] [CrossRef]
- Gullón, B.; Gagaoua, M.; Barba, F.J.; Gullón, P.; Zhang, W.; Lorenzo, J.M. Seaweeds as promising resource of bioactive compounds: Overview of novel extraction strategies and design of tailored meat products. Trends Food Sci. Technol. 2020, 100, 1–18. [Google Scholar] [CrossRef]
- Almeida, A.D.R.; Maciel, M.V.D.O.B.; Machado, M.H.; Bazzo, G.C.; de Armas, R.D.; Vitorino, V.B.; Vitali, L.; Block, J.M.; Barreto, P.L.M. Bioactive compounds and antioxidant activities of Brazilian hop (Humulus lupulus L.) extracts. Int. J. Food Sci. Technol. 2020, 55, 340–347. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Gieysztor, R.; Konkol, M.; Szałas, J.; Rój, E. Essential oils from Humulus lupulus scCO2 extract by hydrodistillation and microwave-assisted hydrodistillation. Molecules 2018, 23, 2866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil-Ramírez, A.; Mendiola, J.A.; Arranz, E.; Ruíz-Rodríguez, A.; Reglero, G.; Ibáñez, E.; Marín, F.R. Highly isoxanthohumol enriched hop extract obtained by pressurized hot water extraction (PHWE). Chemical and functional characterization. Innov. Food Sci. Emerg. Technol. 2012, 16, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Čulík, J.; Jurková, M.; Horák, T.; Čejka, P.; Kellner, V.; Dvořák, J.; Karásek, P.; Roth, M. Extraction of bitter acids from hops and hop products using Pressurized Solvent Extraction (PSE). J. Inst. Brew. 2009, 115, 220–225. [Google Scholar] [CrossRef]
- Formato, A.; Gallo, M.; Ianniello, D.; Montesano, D.; Naviglio, D. Supercritical fluid extraction of α- and β-acids from hops compared to cyclically pressurized solid-liquid extraction. J. Supercrit. Fluids 2013, 84, 113–120. [Google Scholar] [CrossRef]
- Pilna, J.; Vlkova, E.; Krofta, K.; Nesvadba, V.; Rada, V.; Kokoska, L. In vitro growth-inhibitory effect of ethanol GRAS plant and supercritical CO2 hop extracts on planktonic cultures of oral pathogenic microorganisms. Fitoterapia 2015, 105, 260–268. [Google Scholar] [CrossRef]
- Jackowski, J.; Hurej, M.; Rój, E.; Popłoński, J.; Kośny, L.; Huszcza, E. Antifeedant activity of xanthohumol and supercritical carbon dioxide extract of spent hops against stored product pests. Bull. Entomol. Res. 2015, 105, 456–461. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Szymanowska-Powałowska, D.; Szczepaniak, O.; Kmiecik, D.; Przeor, M.; Gramza-Michałowska, A.; Cielecka-Piontek, J.; Smuga-Kogut, M.; Szulc, P. Composition and in vitro effects of cultivars of humulus lupulus L. Hops on cholinesterase activity and microbial growth. Nutrients 2019, 11, 1377. [Google Scholar] [CrossRef] [Green Version]
- Abram, V.; Čeh, B.; Vidmar, M.; Hercezi, M.; Lazić, N.; Bucik, V.; Možina, S.S.; Košir, I.J.; Kač, M.; Demšar, L.; et al. A comparison of antioxidant and antimicrobial activity between hop leaves and hop cones. Ind. Crops Prod. 2015, 64, 124–134. [Google Scholar] [CrossRef]
- Gerhauser, C.; Alt, A.; Heiss, E.; Gamal-Eldeen, A.; Klimo, K.; Knauft, J.; Neumann, I.; Scherf, H.-R.; Frank, N.; Bartsch, H.; et al. Cancer chemopreventive activity of xanthohumol, a natural product derived from hop. Mol. Cancer Ther. 2002, 1, 959–969. [Google Scholar] [PubMed]
- Liu, Y.; Gu, X.-H.; Tang, J.; Liu, K. Antioxidant activities of hops (Humulus lupulus) and their products. J. Am. Soc. Brew. Chem. 2007, 65, 116–121. [Google Scholar] [CrossRef]
- Schurr, B.C.; Hahne, H.; Kuster, B.; Behr, J.; Vogel, R.F. Molecular mechanisms behind the antimicrobial activity of hop iso-α-acids in Lactobacillus brevis. Food Microbiol. 2015, 46, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Bocquet, L.; Sahpaz, S.; Bonneau, N.; Beaufay, C.; Mahieux, S.; Samaillie, J.; Roumy, V.; Jacquin, J.; Bordage, S.; Hennebelle, T.; et al. Phenolic compounds from humulus lupulus as natural antimicrobial products: New weapons in the fight against methicillin resistant staphylococcus aureus, leishmania mexicana and trypanosoma brucei strains. Molecules 2019, 24, 1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogdanova, K.; Röderova, M.; Kolar, M.; Langova, K.; Dusek, M.; Jost, P.; Kubelkova, K.; Bostik, P.; Olsovska, J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res. Microbiol. 2018, 169, 127–134. [Google Scholar] [CrossRef]
- Esmi Serkani, J.; Nasr Isfahani, B.; Safaei, H.G.; Kasra Kermanshahi, R.; Asghari, G. Evaluation of the effect of humulus lupulus alcoholic extract on rifampin-sensitive and resistant isolates of mycobacterium tuberculosis. Res. Pharm. Sci. 2012, 7, 235–242. [Google Scholar]
- Bocquet, L.; Sahpaz, S.; Hilbert, J.L.; Rambaud, C.; Rivière, C. Humulus lupulus L., a very popular beer ingredient and medicinal plant: Overview of its phytochemistry, its bioactivity, and its biotechnology. Phytochem. Rev. 2018, 17, 1047–1090. [Google Scholar] [CrossRef]
- Lee, J.-C.; Kundu, J.K.; Hwang, D.-M.; Na, H.-K.; Surh, Y.-J. Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-κB and AP-1: IκB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis 2007, 28, 1491–1498. [Google Scholar] [CrossRef] [Green Version]
- Van Cleemput, M.; Cattoor, K.; De Bosscher, K.; Haegeman, G.; De Keukeleire, D.; Heyerick, A. Hop (Humulus lupulus)-derived bitter acids as multipotent bioactive compounds. J. Nat. Prod. 2009, 72, 1220–1230. [Google Scholar] [CrossRef]
- Bartmańska, A.; Tronina, T.; Popłoński, J.; Huszcza, E. Biotransformations of prenylated hop flavonoids for drug discovery and production. Curr. Drug Metab. 2013, 14, 1083–1097. [Google Scholar] [CrossRef]
- Negrão, R.; Duarte, D.; Costa, R.; Soares, R. Isoxanthohumol modulates angiogenesis and inflammation via vascular endothelial growth factor receptor, tumor necrosis factor alpha and nuclear factor kappa B pathways. BioFactors 2013, 39, 608–622. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.S.; Minich, D.; Lerman, R.; Darland, G.; Lamb, J.; Tripp, M.; Grayson, N. Isohumulones from hops (Humulus lupulus) and their potential role in medical nutrition therapy. PharmaNutrition 2015, 3, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Mouratidis, P.X.E.; Colston, K.W.; Tucknott, M.L.; Tyrrell, E.; Pirianov, G. An investigation into the anticancer effects and mechanism of action of hop β-acid lupulone and its natural and synthetic derivatives in prostate cancer cells. Nutr. Cancer 2013, 65, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Ming, W.; Jin, X.; Zhai, K.; Liu, B.; Bai, H.; Liu, X. Xanthohumol promotes neuronal and behavioral recovery by suppressing inflammatory response and apoptosis in a rat model of intracerebral hemorrhage. Int. J. Clin. Exp. Med. 2017, 10, 7843–7850. [Google Scholar]
- Rancán, L.; Paredes, S.D.; García, I.; Muñoz, P.; García, C.; López de Hontanar, G.; de la Fuente, M.; Vara, E.; Tresguerres, J.A.F. Protective effect of xanthohumol against age-related brain damage. J. Nutr. Biochem. 2017, 49, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, M.; Kimura, Y. Hop (Humulus lupulus L.) extract inhibits obesity in mice fed a high-fat diet over the long term. Br. J. Nutr. 2013, 109, 162–172. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Rodrigues, I.; Guardão, L.; Rocha-Rodrigues, S.; Silva, C.; Magalhães, J.; Ferreira-de-Almeida, M.; Negrão, R.; Soares, R. Xanthohumol and 8-prenylnaringenin ameliorate diabetic-related metabolic dysfunctions in mice. J. Nutr. Biochem. 2017, 45, 39–47. [Google Scholar] [CrossRef]
- Cömert Önder, F.; Ay, M.; Aydoğan Türkoğlu, S.; Tura Köçkar, F.; Çelik, A. Antiproliferative activity of Humulus lupulus extracts on human hepatoma (Hep3B), colon (HT-29) cancer cells and proteases, tyrosinase, β-lactamase enzyme inhibition studies. J. Enzyme Inhib. Med. Chem. 2016, 31, 90–98. [Google Scholar] [CrossRef] [Green Version]
- Nikmaram, N.; Budaraju, S.; Barba, F.J.; Lorenzo, J.M.; Cox, R.B.; Mallikarjunan, K.; Roohinejad, S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci. 2018, 145, 245–255. [Google Scholar] [CrossRef]
- Fernandes, R.P.P.; Trindade, M.A.; Lorenzo, J.M.; de Melo, M.P. Assessment of the stability of sheep sausages with the addition of different concentrations of Origanum vulgare extract during storage. Meat Sci. 2018, 137, 244–257. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villalobos-Delgado, L.H.; Caro, I.; Blanco, C.; Bodas, R.; Andrés, S.; Giráldez, F.J.; Mateo, J. Effect of the addition of hop (infusion or powder) on the oxidative stability of lean lamb patties during storage. Small Rumin. Res. 2015, 125, 73–80. [Google Scholar] [CrossRef]
- Cieśliński, M.; Idowski, P. Application of common hop in medicine and cosmetology. Pol. J. Cosmetol. 2003, 6, 188–192. [Google Scholar]
Matrix | Target Compound | Method | Extraction Conditions | Outcomes | Reference |
---|---|---|---|---|---|
Hops | Essential oil (desmethylxanthohumol, xanthohumol, co-humulone, lupulone, co-lupulone, and lupulone) | Maceration | Extraction with ethanol:H2O (9:1) with 3 cycles of 2 h and a full night in stirring in the dark Fractionation of the active fraction was carried out using a liquid/liquid extraction with methylene chloride in proportion CH2Cl2/H2O (5:5) | Essential oil yield: 6.3 mL/kg of dry cones Identification of 16 compounds, the three major compounds being myrcene, trans-caryophyllene, and α-humulene | [10] |
Whole hop cones | Essential oil (monoterpenes and sequiterpenes) | Steam distillation | Sequential elution at 8 distillation time | Essential oil yield: 83.2% (the first hour), 9.6% (the second hour), and 7.2% (second half of the distillation) Chemical profile: Monoterpenes are the first to be eluted and sequiterpenes were later eluted | [42] |
Spent hops | Flavonoids (xanthohumol) | SLE | Extraction with methylene chloride, acetone, ethyl acetate, and methanol for 24 h on a rotary shaker and LSR 4:1 (mL/g) | Yield: 92.95 g/kg (methanol); 38.57 g/kg (ethyl acetate); 29.82 g/kg (acetone); 26.01 g/kg (methylene chloride) Xanthohumol: 3.51 g/kg (ethyl acetate); 2.97 g/kg (acetone), 2.94 g/kg (methanol); 1.33 g/kg (methylene chloride) | [43] |
Hops | Prenylflavonoids and bitter acids (prenylphloroglucinols) | Dynamic maceration | Extraction with MeOH–HCOOH (99:1, v/v), at room temperature for 30 min under magnetic stirring using an LSR of 20 mL/g | ≈17.5 mg/g bitter acids and ≈1.4 mg/g prenylflavonoids | [44] |
Hops | Polyphenols | SLE | Extraction with DES based on glycerol and L-alanine for 150 min, at 50 °C in an oil bath. Optimal conditions of extraction: CDES = 85% (w/w), LSR = 59 mL/g, and SS = 688 rpm | Yield: 118.97 mg GAE/of dry mass | [23] |
Hop leaves | Polyphenols | UAE | Extraction with methyl, ethyl, and isopropyl alcohol at different concentrations (40%, 70%, and 96–99.5% (v/v)) using a frequency of 40 kHz for 15, 30, and 60 min at room temperature | TPC: 0.51–6.60 mg GA/g raw material (collected in 2017) and 0.02–6.22 GA/g raw material (collected in 2018) | [3] |
Hop extracts | Essential oils (β-myrcene and α-humulene) | MAHD | 335 W microwave power for 30 min using an LSR of 8:3 (using water as solvent) | Yield: 3.77%; β-myrcene: 77.36%; α-humulene: 9.47% | [50] |
Hop flowers | Acidic compounds (α acids, iso α acids, β acids) | PLE with a Naviglio Extractor | Sample weight: 21 g; solvent: ethyl alcohol; static phase: 2 min; dynamic phase: 5 cycles with 12 sec of stop piston; total cycles: 360 (24 h) | α acids: 50.2%; iso α acids: 9.3%; β acids: 16.3% | [53] |
Hops (pellets) | Isoxanthohumol and xanthohumol | PHWE/PLE | PHWE: 1500 psi at 150 °C and extraction time of 30 min (5 min by cycle -6 cycles-) PLE: EtOH as a solvent, after using hexane at 150 °C for 20 min each extraction | PHWE: 2.34 mg/g of isoxanthohumol and 0.11 mg/g of xanthohumol PLE: 5.15 mg/g of isoxanthohumol and 2.57 mg/g of xanthohumol | [51] |
Hop and hop products | α- and β-acids | PSE | PSE optimal conditions: number of cycles 3 (5 min each), static mode, 80 °C, 15 MPa, solvent: methanol-diethylether (1:1), inert matrix: sea sand (50 to 70 μm), solvent rinsing: 20 sec, nitrogen blowdown: 2 min, amount of sample: 1.5 g of ground hop cones or pellets or 0.3 g of hop extract | Yields between 96.8% and 102.7% | [52] |
Hop flowers | Acidic compounds (α acids, β acids) | SFE | SFE-CO2 (SFE-I) and SFE-CO2 with ethanol (SFE-II): 350 bar at 35 °C, a static period of 10 min, and a dynamic phase of 260 min | SFE-I: 21.5% α acids; 46.2% β acids SFE-II: 28.3% α acids; 37.5% β acids | [53] |
Hop pellets (Herkules and Hallertau Magnum) | Acidic compounds (α-acids (cohumulone), β-acids (colupulone)) | SFE | SFE-CO2 was carried out at a pressure of 29 MPa, 50 °C during 4 h | H. lupulus ‘Herkules’: 55.2% of α-acids (38.7% of cohumulone); 18.3% of β-acids (57.2% colupulone) H. lupulus ‘Hallertau Magnum’: 46.9% of α-acids (24.9% of cohumulone); 22.9% of β-acids (44.2% colupulone) | [54] |
Spent hops | Xanthohumol | SFE | SFE-CO2 was carried out at a pressure of 850 bar at 80 °C | 1.23% of yield of xanthohumol | [55] |
Responsible Compound | Methodology | Outcomes | Reference |
---|---|---|---|
Antioxidant Activity | |||
Phenolic Acids and flavonols | DPPH and ABTS | DPPH ranged from 3.50 mmol Trolox/g dw for Marynka variety ethanol extract to 4.75 mmol Trolox/g dw for Magnum variety water extract. ABTS varied from 1.32 mmol Trolox/g dw for Magnum variety water extract to 2.43 mmol Trolox/g dw for Marynka variety ethanol extract | [56] |
(+)-catechin and (−)-epicatechin | DPPH, reduction power, β-carotene bleaching inhibition capacity, TBARS | EC50 values: DPPH: 505 µg/mL; Reduction power: 530 µg/mL; β-Carotene bleaching inhibition capacity: 1330 µg/mL; TBARS: 128 µg/mL | [2] |
Phenolic compounds | DPPH and FRAP | DPPH EC50: 0.070 mg/mL; FRAP: reduction of 0.117 mL/µg of ferric ions in 25 min | [57] |
Xanthohumol | ORAC | The antioxidant activity determined by the ORAC assay was higher than the reference compound TROLOX | [58] |
Quercetin and isoquercetin | DPPH and ABTS | DPPH EC50: 3.91 µL/mL; ABTS EC50: 21.29 µL/mL | [49] |
Bitter acids, isomerized hop bitter acids, hop oil, and hexahydro-β-acids | Hydroxyl radical scavenging activity | EC50: α-acid: 0.21 mg/mL; β-acid: 0.96 mg/mL; Dihydro-iso-α-acid: 1.36 mg/mL; tetrahydro-iso-α-acid 1.77 mg/mL; hexahydro-iso-α-acid 1.40 mg/mL; hexahydro-β-acid 0.50 mg/mL; oil 0.18 mg/mL | [59] |
Antimicrobial Activity | |||
α- and β-acids | Microdilution method | Gram-positive bacteria: MICs 8–64 µg/mL; Gram-negative bacteria: MICs ≥ 32 µg/mL; yeast: MIC = 512 µg/mL | [54] |
Flavonoids among them two natural (α, β-dihydroxanthohumol and 8-prenylnaringenin) | Microdilution method | Growth inhibition of MSSA and MRSA at MIC80 values of 5–50 µg/mL | [43] |
Humulinic acid | Microdilution method | Inhibition of Lactobacillus brevis at MIC < 10 µM | [60] |
Lupulone, xanthohumol, and desmethylxanthohumol | Microdilution method | Antimicrobial effect against MSSA and MRSA with MICs values of 0.6–1.2 µg/mL for lupulone, 9.8–19.5 µg/mL for xanthohumol and 19.5–39 µg/mL for desmethylxanthohumol Xanthohumol totally inhibited the biofilm formation at the MIC value. Desmethylxanthohumol and lupulone inhibited the biofilm formation at sub-inhibitory concentrations | [61] |
Humulone, lupulone, and xanthohumol | Microdilution method | MICs values: 7.5–30 µg/mL for humulone, 0.5–4 µg/mL for lupulone, 2–4 µg/mL for xanthohumol MBCs values: 30–125 µg/mL for humulone, 1–15 µg/mL for lupulone, 2–7.5 µg/mL for xanthohumol 90% reduction in biofilm formation using 2–7.5 µg/mL of lupulone, 15–30 µg/mL of xanthohumol and 30–250 µg/mL of humulone | [62] |
Desmethylxanthohumol and co-humulone | Spotting method | Antifungal activity against Zymoseptoria tritici. IC50 values: 0.36 g/L for essential oil and 0.73 g/L for cone extracts | [10] |
(+)-catechin and (−)-epicatechin | Microdilution method | MIC: 0.15 mg/mL for Penicillium ochrochloron, 0.075 mg/mL for Penicillium funiculosum, 0.15 mg/mL for Penicillium verrucosum var. cyclopium MBC: 0.30 mg/mL for Penicillium ochrochloron, 0.15 mg/mL for Penicillium funiculosum, 0.30 mg/mL for Penicillium verrucosum var. cyclopium | [2] |
Anti-Inflammatory Activity | |||
Humulone | Mouse skin stimulated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) | Humulone at 10 µmol inhibited TPA-induced COX-2 expression through the regulation of nuclear factor-kB | [65] |
Isoxanthohumol | Human umbilical vein endothelial cells (HUVEC) and human aortic smooth muscle cells (HASMC) | Isoxanthohumol at a dose of 10 µmol reduced in HASMC the TNF-α by 26% and nuclear factor kappa B by 24%; in HUVEC, the decrease was 40% for TNF-α and 42% for nuclear factor kappa B | [68] |
Anticancer Activity | |||
Xanthohumol | Sulforhodamine B assay | Induced cell death in human alveolar adenocarcinoma cell line | [11] |
Xanthohumol, xanthohumol C, and crude hop extract | CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay from Promega | Antiproliferative effects on breast cancer cells | [13] |
Lupulone | MTT Assay | Anticancer potential on 2 prostate cancer cell lines (PC3 and DU145 cells). IC50 was 5 μM for both cell lines after 3 days of treatment | [70] |
Hop extract | MTT Assay | Antiproliferative effects on human hepatoma carcinoma at doses of 0.6–1 mg/mL | [75] |
Other Bioactivities | |||
Xanthohumol | Intracerebral hemorrhage model was induced by intrastriatal injection of bacterial collagenase | Reduced the hemorrhagic injury and promote the neuronal recovery | [71] |
Xanthohumol | Senescence-accelerated prone male mice (SAMP8) | Prevents the expression of brain damage induced by aging | [72] |
Hop extract | Male C57BL/6J mice (4 weeks old) fed a high-fat diet | Inhibited the increasing body and adipose tissue weight, adipose cell diameter, and liver lipids, and improved glucose tolerance induced by a high-fat diet | [73] |
Xanthohumol or 8-prenylnaringenin | Type 2 diabetes mellitus (T2DM) mice model | Improves metabolic dysfunctions associated with diabetes: body weight gain; decreased glycemia, triglyceride, cholesterol and alkaline phosphatase levels; and improved insulin sensitivity | [74] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astray, G.; Gullón, P.; Gullón, B.; Munekata, P.E.S.; Lorenzo, J.M. Humulus lupulus L. as a Natural Source of Functional Biomolecules. Appl. Sci. 2020, 10, 5074. https://doi.org/10.3390/app10155074
Astray G, Gullón P, Gullón B, Munekata PES, Lorenzo JM. Humulus lupulus L. as a Natural Source of Functional Biomolecules. Applied Sciences. 2020; 10(15):5074. https://doi.org/10.3390/app10155074
Chicago/Turabian StyleAstray, Gonzalo, Patricia Gullón, Beatriz Gullón, Paulo E. S. Munekata, and José M. Lorenzo. 2020. "Humulus lupulus L. as a Natural Source of Functional Biomolecules" Applied Sciences 10, no. 15: 5074. https://doi.org/10.3390/app10155074
APA StyleAstray, G., Gullón, P., Gullón, B., Munekata, P. E. S., & Lorenzo, J. M. (2020). Humulus lupulus L. as a Natural Source of Functional Biomolecules. Applied Sciences, 10(15), 5074. https://doi.org/10.3390/app10155074