Effect of the Surface Morphology of TiO2 Nanotubes on Photocatalytic Efficacy Using Electron-Transfer-Based Assays and Antimicrobial Tests
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of Titanium Nanotubes
2.2. Characterisation of Titanium Dioxide Surfaces
2.3. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Stabilisation of TiO2-NT Surfaces
2.4. Cupric ion Reduction Capacity of TiO2-NT Surfaces Using a Modified CUPRAC Assay
2.5. Determination of ABTS Radical Cation Stabilisation Activity of TiO2-NT Surfaces
2.6. Determination of Chemical Degradation Activity of the of TiO2-NT Surfaces under Different pH Conditions
2.7. Determination of Antibacterial and Antifungal Activity of the of TiO2-NT Surfaces
3. Results
3.1. Characterisation of Titanium Dioxide Surfaces
3.2. Chemical Composition of the TiO2-NT Surface
3.3. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Stabilisation of TiO2-NT Surfaces
3.4. Cupric Ion Reduction Capacity of TiO2-NT Surfaces Using a Modified CUPRAC Assay
3.5. Determination of ABTS Radical Cation Stabilisation Activity of TiO2-NT Surfaces
3.6. Determination of Chemical Degradation Activity of the of TiO2-NT Surfaces under Different pH Conditions
3.7. Determination of Antibacterial and Antifungal Activity of the of TiO2-NT Surfaces
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gamage, J.; Zhang, Z. Applications of Photocatalytic Disinfection. Int. J. Photoenergy 2010, 2010, 764870. [Google Scholar] [CrossRef] [Green Version]
- Chong, M.N.; Jin, B.; Chow, C.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X. Titanium didioxide photocatalysis: present situation and future approaches. C. R. Chim. 2006, 9, 750–760. [Google Scholar] [CrossRef]
- Valencia, S.; Marín, J.M.; Restrepo, G. Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater. Sci. J. 2010, 4, 9–14. [Google Scholar] [CrossRef]
- Jing, L.; Li, S.; Song, S.; Xue, L.; Fu, H. Investigation on the electron transfer between anatase and rutile in nano-sized TiO2 by means of surface photovoltage technique and its effects on the photocatalytic activity. Sol. Energy Mater. Sol. Cells 2008, 92, 1030–1036. [Google Scholar] [CrossRef]
- Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal. 2001, 203, 82–86. [Google Scholar] [CrossRef]
- Bersani, D.; Antonioli, G.; Lottici, P.P.; López, T. Raman study of nanosized titania prepared by sol–gel route. J. Non-Cryst. Solids 1998, 232, 175–181. [Google Scholar] [CrossRef]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.W.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C. 2015, 25, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Riboni, F.; Bettini, L.G.; Bahnemann, D.W.; Selli, E. WO3–TiO2 vs. TiO2 photocatalysts: Effect of the W precursor and amount on the photocatalytic activity of mixed dioxides. Catal. Today 2013, 209, 28–34. [Google Scholar] [CrossRef]
- Szczepanik, B. Photocatalytic degradation of organic contaminants over clay-TiO2 nano-composites: A review. Appl. Clay Sci. 2017, 141, 227–239. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [PubMed]
- Bhattacharyya, A.; Kawi, S.; Ray, M.B. Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents. Catal Today 2004, 98, 431–439. [Google Scholar] [CrossRef]
- Torimoto, T.; Okawa, Y.; Takeda, N.; Yoneyama, H. Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane. J. Photochem. Photobiol. A 1997, 103, 153–157. [Google Scholar] [CrossRef]
- Yoo, H. TiO2-Based Electrodes for Electrochemical Energy Conversion and Storage. Ph.D. Thesis, Inha University, Incheon, South Korea, 2018. [Google Scholar]
- Mohamed, A.M.; Aljaber, A.S.; Allam, N.K.; Al-Qaradawi, S.Y. TiO2 nanotubes with ultrathin walls for enhanced water splitting. Chem. Commun. 2015, 51, 12617–12620. [Google Scholar] [CrossRef]
- Bastús, N.G.; Merkoçi, F.; Piella, J.; Puntes, V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chem. Mater. 2014, 26, 2836–2846. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant Activity/Capacity Measurement. 1. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Yu, J.C.; Zhang, L.; Zheng, Z.; Zhao, J. Synthesis and characterization of phosphated mesoporous titanium didioxide with high photocatalytic activity. Chem. Mater. 2003, 15, 2280–2286. [Google Scholar] [CrossRef]
- Moma, J. Modified Titanium Didioxide for Photocatalytic-Photocatalysts-Applications and Attributes. IntechOpen 2018, 37–56. [Google Scholar]
- Sun, C.; Xiong, B.; Pan, Y.; Cui, H. Adsorption removal of tannic acid from aqueous solution by polyaniline: Analysis of operating parameters and mechanism. J. Colloid Interface Sci. 2017, 487, 175–181. [Google Scholar] [CrossRef]
- Wang, J.H.; Zheng, S.R.; Liu, J.L.; Xu, Z.Y. Tannic acid adsorption on amino functionalized magnetic mesoporous silica. Chem. Eng. J. 2010, 165, 10–16. [Google Scholar] [CrossRef]
- Buso, A.; Balbo, L.; Giomo, M.; Farnia, G.; Sandona, G. Electrochemical Removal of Tannins from Aqueous Solutions. Ind. Eng. Chem. Res. 2000, 39, 494–499. [Google Scholar] [CrossRef]
- Cañizares, P.; Perez, A.; Camarillo, R.; Llanos, J. Tannic acid removal from aqueous effluents using micellar enhanced ultrafiltration at pilot scale. Desalination 2006, 200, 310–312. [Google Scholar] [CrossRef]
- Rodríguez, H.; de las Rivas, B.; Gómez-Cordovés, C.; Muñoz, R. Degradation of tannic acid by cell-free extracts of Lactobacillus plantarum. Food Chem. 2008, 107, 664–670. [Google Scholar] [CrossRef] [Green Version]
- Cantarella, M.; Sanz, R.; Buccheri, M.A.; Romano, L.; Privitera, V. PMMA/TiO2 nanotubes composites for photocatalytic removal of organic compounds and bacteria from water. Mater. Sci. Semicond. Process. 2016, 42, 58–61. [Google Scholar] [CrossRef]
- Dbira, S.; Bensalah, N.; Zagho, M.M.; Ennahaoui, M.; Bedoui, A. Oxidative degradation of tannic acid in aqueous solution by UV/S2O82- and UV/H2O2/Fe2+ processes: A comparative study. Appl. Sci. 2019, 9, 156. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Zheng, B.; Du, J.; Liu, G.; Guo, Y.; Xiao, D. Electrophoresis deposition of Ag nanoparticles on TiO₂ nanotube arrays electrode for hydrogen peroxide sensing. Talanta 2013, 112, 129–135. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Yu, B.; Zhou, F.; Liu, W. TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chem. Mater. 2009, 21, 1198–1206. [Google Scholar] [CrossRef]
- Fu, Y.-S.; Li, J.; Li, J. Metal/Semiconductor Nanocomposites for Photocatalysis: Fundamentals, Structures, Applications and Properties. Nanomaterials 2019, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Kadnikova, E.N.; Kostić, N.M. Oxidation of ABTS by hydrogen perdioxide catalyzed by horseradish peroxidase encapsulated into sol-gel glass. Effects of glass matrix on reactivity. J. Mol. Catal. B Enzym. 2002, 18, 39–48. [Google Scholar] [CrossRef]
- Yoneyama, H. Electrochemical aspects of light-induced heterogeneous reactions on semiconductors. Crit. Rev. Solid State Mater. Sci. 1993, 18, 69–111. [Google Scholar] [CrossRef]
- Zhuang, Q.-K.; Scholz, F.; Pragst, F. The voltammetric behaviour of solid 2,2-diphenyl-1-picrylhydrazyl (DPPH) microparticles. Electrochem. Commun. 1999, 1, 406–410. [Google Scholar] [CrossRef]
- Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; Van Grieken, R. Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes. Electrochim. Acta 2016, 191, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, H.F.; Lin, C.J.; Lai, Y.K.; Sun, L.; Li, J. Some Critical Structure Factors of Titanium Oxide Nanotube Array in Its Photocatalytic Activity. Environ. Sci. Technol. 2007, 41, 4735–4740. [Google Scholar] [CrossRef] [PubMed]
- Azeez, F.; Al-Hetlani, E.; Arafa, M.; Abdelmonem, Y.; Abdel-Nazeer, A.; Amin, M.O.; Madkour, M. The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 2018, 8, 7104. [Google Scholar] [CrossRef]
- Khan, M.; Chowdhurya, M.; Chuan, T.; Cheng, C.K.; Yousuf, A. Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catal. Sci. Technol. 2015, 5, 2522–2531. [Google Scholar] [CrossRef] [Green Version]
- Rockafellow, E.M.; Stewart, L.K.; Jenks, W.S. Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation? Appl. Catal. B 2009, 91, 554–562. [Google Scholar] [CrossRef]
- Baram, N.; Starosvetsky, D.; Starosvetsky, J.; Epshtein, M.; Armon, R.; Ein-Eli, Y. Photocatalytic inactivation of microorganisms using nanotublar TiO2. Appl. Catal. B Environ. 2011, 101, 212. [Google Scholar] [CrossRef]
- Beranek, R.; Tsuchiya, H.; Sugishima, T.; Macak, J.; Taveira, L.; Fujimoto, S.; Kisch, H.; Schumki, P. Enhancement and limits of the photoelectrocheical response from anodic TiO2 nanotubes. Appl. Phys. Lett. 2005, 87, 243114. [Google Scholar] [CrossRef]
- Smith, Y.; Ray, R.; Carlson, K.; Sarma, B.; Misra, M. Self-ordered titanium didioxide nanotube arrays: Anodic synthesis and their photo/electro-catalytic applications. Materials 2013, 6, 2892. [Google Scholar] [CrossRef]
- Anitha, V.C.; Lee, J.H.; Lee, J.; Banerjee, A.N.; Joo, S.W.; Min, B.K. Biofilm formation on a TiO₂ nanotube with controlled pore diameter and surface wettability. Nanotechnology 2015, 26, 065102. [Google Scholar] [CrossRef] [PubMed]
- Hajjaji, A.; Elabidi, M.; Trabelsi, K.; Assadi, A.A.; Bessaïs, B.; Rtimi, S. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity. Colloid Surface B 2018, 170, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Van Viet, P.; Phan, B.T.; Mott, D.; Maenosono, S.; Sang, T.T.; Thi, C.M.; Van Hieu, L. Silver nanoparticle loaded TiO2 nanotubes with high photocatalytic and antibacterial activity synthesized by photoreduction method. J. Photochem. Photobiol. A 2018, 352, 106–112. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, M.S.T.; Oliveira-Campos, A.M.; Pinto, E.M.; Plasência, P.M.; Queiroz, M.J.R.P. Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere 1999, 39, 781–786. [Google Scholar] [CrossRef]
- Viet, P.; Tran, H.N. Adsorption and photocatalytic degradation of methylene blue by titanium didioxide nanotubes at different pH conditions. Adv. Nat. Sci. Nanosci. 2019, 10, 045011. [Google Scholar]
- Bahnemann, D.W.; Cunningham, J.; Fox, M.A.; Pelizzetti, E.; Pichat, P.; Serpone, N. Aquatic Surface Photochemistry; Lewis Publishers: Boca Raton, FL, USA, 1994. [Google Scholar]
- Dunlop, P.S.M.; Byrne, J.A.; Manga, N.; Eggins, B.R. The photo-catalytic removal of bacterial pollutants from drinking water. J. Photochem. Photobiol. A 2002, 148, 355–363. [Google Scholar] [CrossRef]
- Dunlop, P.S.M.; Sheeran, C.P.; Byrne, J.A.; McMahon, M.A.S.; Boyle, M.A.; McGuigan, K.G. Inactivation of clinically relevant patho-gens by photocatalytic coatings. J. Photochem. Photobiol. A 2010, 216, 303–310. [Google Scholar] [CrossRef]
- Cheng, C.-L.; Sun, D.-S.; Chu, W.-C.; Tseng, Y.-H.; Ho, H.-C.; Wang, J.-B.; Chung, P.-H.; Chen, J.-H.; Tsai, P.-J.; Lin, N.-T.; et al. The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. J. Biomed. Sci. 2009, 16, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Singh, R.; Purohit, S.; Malodia, P.; Kumar, R. Photocatalytic disinfection of water using immobilized titanium didioxide. Pollut. Res. 2005, 24, 29–33. [Google Scholar]
- Kozlova, E.A.; Safatov, A.S.; Kiselev, S.A.; Marchenko, V.Y.; Sergeev, A.N.; Skarnovich, M.O.; Emelyanova, E.K.; Smetannikova, M.A.; Buryak, G.A.; Vorontsov, A.V. Inactivation and Mineralization of Aerosol Deposited Model Pathogenic Microorganisms over TiO2 and Pt/TiO2. Environ. Sci. Technol. 2010, 44, 5121–5126. [Google Scholar] [CrossRef] [PubMed]
- Greist, H.T.; Hingorani, S.K.; Kelly, K.; Goswami, D.Y. Using scanning electron microscopy to visualize photocatalytic miner-alization of airborne microorganisms. In Proceedings of the 9th International Conference on Indoor Air Quality and Climate, Monterey, CA, USA, 30 June–5 July 2002; pp. 712–717. [Google Scholar]
- Veselá, M.; Veselý, M.; Chomoucká, J.; Lipenská, M. Photocatalytic disinfection of water using Ag/TiO2. Chem. List. 2008, 102, 507–508. [Google Scholar]
- Chen, F.N.; Yang, X.D.; Wu, Q. Antifungal capability of TiO2 coated film on moist wood. Build. Environ. 2009, 44, 1088–1093. [Google Scholar] [CrossRef]
- Hong, J.; Ma, H.; Otaki, M. Controlling algal growth in photo-dependent decolorant sludge by photocatalysis. J. Biosci. Bioeng. 2005, 99, 592–597. [Google Scholar] [CrossRef]
- Kim, S.-C.; Lee, D.-K. Inactivation of algal blooms in eutrophic waterof drinking water supplies with the photocatalysisof TiO2 thin film on hollow glass beads. Water Sci. Technol. 2005, 52, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Sökmen, M.; Degerli, S.; Aslan, A. Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water. Exp. Parasitol. 2008, 119, 44–48. [Google Scholar] [CrossRef]
- Ryu, H.; Gerrity, D.; Crittenden, J.C.; Abbaszadegan, M. Photo-catalytic inactivation of Cryptosporidium parvum with TiO2 and low-pressure ultraviolet irradiation. Water Res. 2008, 42, 1523–1530. [Google Scholar] [CrossRef]
- Gerrity, D.; Ryu, H.; Crittenden, J.; Abbaszadegan, M. Photocatalytic inactivation of viruses using titanium didioxide nano-particles and low-pressure UV light. J. Environ. Sci. Health A 2008, 43, 1261–1270. [Google Scholar] [CrossRef]
- Paspaltsis, I.; Kotta, K.; Lagoudaki, R.; Grigoriadis, N.; Poulios, I.; Sklaviadis, T. Titanium didioxide photocatalytic inactivation of prions. J. Gen. Virol. 2006, 87, 3125–3130. [Google Scholar] [CrossRef]
- Kubacka, A.; Suarez-Diez, M.; Rojo, D.; Bargiela, R.; Ciordia, S.; Zapico, I.; Albar, J.P.; Barbas, C.; Dos Santos, V.A.P.M.; Fernández-García, M.; et al. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci. Rep. 2014, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yemmireddy, V.K.; Hung, Y.C. Using Photocatalyst Metal Dioxides as Antimicrobial Surface Coatings to Ensure Food Safety—Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 2017, 16, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Skorb, E.V.; Antonouskaya, L.I.; Belyasova, N.A.; Shchukin, D.G.; Möhwald, H.; Sviridov, D.V. Antibacterial activity of thin-film photo-catalysts based on metal-modified TiO2 and TiO2: In2O3 nano-composite. Appl. Catal. B 2008, 84, 94–99. [Google Scholar] [CrossRef]
- Sheel, D.W.; Brook, L.A.; Ditta, I.B.; Evans, P.; Foster, H.A.; Steele, A.; Yates, H.M. Biocidal Silver and Silver/Titania Composite Films Grown by Chemical Vapour Deposition. Int. J. Photoenergy 2008, 2008, 168185. [Google Scholar] [CrossRef]
- Brown, G.D.; Gordon, S. Immune recognition of fungal β-glucans. Cell. Microbiol. 2005, 7, 471–479. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; De Oliveira, H.C.; Rivera, J.; Trevijano-Contador, N. The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Front. Microbiol. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Shibata, N.; Suzuki, A.; Kobayashi, H.; Okawa, Y. Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem. J. 2007, 404, 365–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontaine, T.; Simenel, C.; Dubreucq, G.; Adam, O.; Delepierre, M.; Lemoine, J. Molecular organization of the alkali-insoluble fraction of Aspergillus fumigatus cell wall. J. Boil. Chem. 2000, 275, 27594–27607. [Google Scholar] [CrossRef] [Green Version]
- Costachel, C.; Coddeville, B.; Latgé, J.-P.; Fontaine, T. Glycosylphosphatidylinositol-anchored Fungal Polysaccharide in Aspergillus fumigatus. J. Boil. Chem. 2005, 280, 39835–39842. [Google Scholar] [CrossRef] [Green Version]
Material | Tube Length (µm) | Tube Diameter (nm) | Wall Thickness (nm) |
---|---|---|---|
TiO2NT-P | 0.65 ± 0.11 | 70–100 | 12.00 ± 1.54 |
TiO2NT-S | 1.51 ± 0.09 | 70–100 | 13.00 ± 1.17 |
TiO2NT | 9.76 ± 0.18 | 90–122 | 10.15 ± 1.41 |
TiO2NT-Ag | 9.65 ± 0.27 | 90–125 | 10.21 ± 1.36 |
TiO2NT-P | TiO2NT-S | TiO2NT | TiO2NT-Ag | |||||
---|---|---|---|---|---|---|---|---|
Element | Wt % | At % | Wt % | At % | Wt % | At % | Wt % | At % |
C | 00.86 | 01.93 | 03.85 | 07.00 | 03.79 | 08.15 | 00.91 | 02.04 |
O | 35.73 | 60.47 | 28.77 | 49.51 | 39.12 | 60.90 | 38.00 | 63.74 |
F | 00.97 | 01.38 | 03.53 | 05.11 | 00.44 | 00.76 | 01.47 | 02.07 |
Na | 00.85 | 01.00 | - | - | - | - | - | - |
P | 01.31 | 01.14 | - | - | - | - | - | - |
S | - | - | 04.29 | 03.69 | - | - | - | - |
Ag | - | - | - | - | - | - | 04.03 | 01.00 |
Ti | 60.29 | 34.08 | 60.36 | 34.69 | 56.65 | 30.19 | 55.59 | 31.15 |
DPPH (s−1) | ABTS (s−1) | CUPRAC (M−1s−1) | |
---|---|---|---|
Blank | −1.12 × 10−3 ± 5.80 × 10−5 | 3.82 × 10−3 ± 6.12 × 10−5 s−1 | 1.68 × 10−3 ± 4.76 × 10−4 |
TiO2NT | −2.63 × 10−2 ±2.13 × 10−3 s−1 | −1.03 × 10−2 ± 4.30 × 10−4 s−1 | 1.15 × 10−2 ± 9.64 × 10−4 |
TiO2NT-Ag | −2.19 × 10−2 ± 9.87 × 10−4 s−1 | −1.07 × 10−2 ± 1.17 × 10−3 s−1 | 1.21 × 10−2 ± 4.62 × 10−4 |
TiO2NT-S | 9.73 × 10−3 ± 9.87 × 10−4 s−1 | −7.24 × 10−3 ± 3.34 × 10−4 s−1 | 7.09 × 10−3 ± 5.01 × 10−4 |
TiO2NT-P | −1.29 × 10−2 ±5.22 × 10−3 s−1 | −8.58 × 10−3 ± 4.12 × 10−4 s−1 | 6.29 × 10−3 ± 6.25 × 10−5 |
pH | |||||
---|---|---|---|---|---|
pH 2 | pH 3 | pH 6 | pH 7 | pH 9 | |
TiO2NT Surface | +ve | +ve | Neutral | -ve | -ve |
Tannic acid | +ve | +ve | Neutral | -ve | -ve |
Interaction | Repulsion | Repulsion | Equal | Repulsion | Repulsion |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lia, F.; Farrugia, C.; Buccheri, M.A.; Rappazzo, G.; Zammit, E.; Rizzo, A.; Grech, M.; Refalo, P.; Abela, S. Effect of the Surface Morphology of TiO2 Nanotubes on Photocatalytic Efficacy Using Electron-Transfer-Based Assays and Antimicrobial Tests. Appl. Sci. 2020, 10, 5243. https://doi.org/10.3390/app10155243
Lia F, Farrugia C, Buccheri MA, Rappazzo G, Zammit E, Rizzo A, Grech M, Refalo P, Abela S. Effect of the Surface Morphology of TiO2 Nanotubes on Photocatalytic Efficacy Using Electron-Transfer-Based Assays and Antimicrobial Tests. Applied Sciences. 2020; 10(15):5243. https://doi.org/10.3390/app10155243
Chicago/Turabian StyleLia, Frederick, Clayton Farrugia, Maria Antonietta Buccheri, Giancarlo Rappazzo, Edwin Zammit, Alex Rizzo, Maurice Grech, Paul Refalo, and Stephen Abela. 2020. "Effect of the Surface Morphology of TiO2 Nanotubes on Photocatalytic Efficacy Using Electron-Transfer-Based Assays and Antimicrobial Tests" Applied Sciences 10, no. 15: 5243. https://doi.org/10.3390/app10155243
APA StyleLia, F., Farrugia, C., Buccheri, M. A., Rappazzo, G., Zammit, E., Rizzo, A., Grech, M., Refalo, P., & Abela, S. (2020). Effect of the Surface Morphology of TiO2 Nanotubes on Photocatalytic Efficacy Using Electron-Transfer-Based Assays and Antimicrobial Tests. Applied Sciences, 10(15), 5243. https://doi.org/10.3390/app10155243