Empirical Analysis for Impact of High-Speed Rail Construction on Interregional Dependency
Abstract
:1. Introduction
2. Study Assumptions and Study Area
2.1. Study Assumptions
- First, interregional socio–economic dependency, as with the need for job opportunities, cultural activities, leisure services, education, and commercial communication, to a certain extent, can be represented by the interregional traffic volume. That is to say, the interregional traffic reflects people’s demand for infrastructure and the scale of the local economy.
- Second, as Korea has formed a well-developed transportation infrastructure before the construction of KTX, we assume that all traffic facilities, except the KTX, are consistent during the study period.
- Third, there is no significant difference in the rate of socio–economic scale change among cities involved in this study.
2.2. Study Area
3. Data and Methods
3.1. Data Source
3.2. Methods
4. Analysis and Results
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, G.; Silva, J.D.A.E. Regional impacts of high-speed rail: A review of methods and models. Transp. Lett. 2013, 5, 131–143. [Google Scholar] [CrossRef]
- Kim, H.W.; Lee, D.H.; Park, H.S. The impact of Gyeongbu high speed rail construction on regional economic growth. KSCE J. Civ. Eng. 2013, 17, 1206–1212. [Google Scholar] [CrossRef]
- Banister, D.; Berechman, J. Transport Investment and Economic Development; University College London Press: London, UK, 2000. [Google Scholar]
- Vickerman, R. High-speed rail in Europe: Experience and issues for future development. Ann. Reg. Sci. 1997, 31, 21–38. [Google Scholar] [CrossRef]
- Atack, J.; Bateman, F.; Haines, M.; Margo, R.A. Did railroads induce or follow economic growth? Urbanization and population growth in the American Midwest, 1850–1860. Soc. Sci. Hist. 2010, 34, 171–197. [Google Scholar] [CrossRef]
- Donaldson, D. Railroads of the Raj: Estimating the impact of transportation infrastructure. Am. Econ. Rev. 2018, 108, 899–934. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, D.; Hornbeck, R. Railroads and American economic growth: A “market access” approach. Q. J. Econ. 2016, 131, 799–858. [Google Scholar] [CrossRef] [Green Version]
- Behrens, K.; Lamorgese, A.R.; Ottaviano, G.I.P.; Tabuchi, T. Changes in transport and non-transport costs: Local vs global impacts in a spatial network. Reg. Sci. Urban Econ. 2007, 37, 625–648. [Google Scholar] [CrossRef] [Green Version]
- Ono, M.; Asano, M. The study of the straw effect produced by the high-speed transportation: The verification of the area along the Nagano Shinkansen by the statistical data. Civ. Eng. Plan. Stud. 2005, 32. (CD-ROM). [Google Scholar]
- Perroux, F. Economic space: Theory and applications. Q. J. Econ. 1950, 64, 89–104. [Google Scholar] [CrossRef]
- Hirschman, A.O. The Strategy of Economic Development; Yale University Press: New Haven, Connecticut, 1958. [Google Scholar]
- Myrdal, G. Economic Theory and Underdeveloped Regions; Gerald Duckworth and Co.: London, UK, 1957. [Google Scholar]
- Friedman, J.R. Regional Development Policy: A Case Study of Venezuela; MIT Press: Cambridge, UK, 1966. [Google Scholar]
- Prebisch, R. The Economic Development of Latin America and Its Principal Problems; United Nations Department of Economic Affairs: Lake Success, NY, USA, 1950. [Google Scholar]
- Krugman, P. Increasing returns and economic geography. J. Political Econ. 1991, 99, 483–499. [Google Scholar] [CrossRef]
- Bernard, A.B.; Moxnes, A.; Saito, Y.U. Production networks, geography, and firm performance. J. Political Econ. 2019, 127, 639–688. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Nakajima, K. Highways and industrial development in the peripheral regions of China. Pap. Reg. Sci. 2017, 96, 325–356. [Google Scholar] [CrossRef]
- Shaw, S.L.; Fang, Z.; Lu, S.; Tao, R. Impacts of high speed rail on railroad network accessibility in China. J. Transp. Geogr. 2014, 40, 112–122. [Google Scholar] [CrossRef]
- Ahlfeldt, G.M.; Feddersen, A. From periphery to core: Measuring agglomeration effects using high-speed rail. J. Econ. Geogr. 2018, 18, 355–390. [Google Scholar] [CrossRef]
- Ozbay, K.; Ozmen, D.; Berechman, J. Modeling and analysis of the link between accessibility and employment growth. J. Transp. Eng. 2006, 132, 385–393. [Google Scholar] [CrossRef]
- Beyazit, E. Are wider economic impacts of transport infrastructures always beneficial? Impacts of the istanbul metro on the generation of spatio-economic inequalities. J. Transp. Geogr. 2015, 45, 12–23. [Google Scholar] [CrossRef]
- Faber, B. Trade integration, market size and industrialization: Evidence from China’s national trunk highway system. Rev. Econ. Stud. 2014, 81, 1046–1070. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, H. High-speed railroad and economic geography: Evidence from Japan. J. Reg. Sci. 2018, 58, 705–727. [Google Scholar] [CrossRef]
- Kim, J.G. Prospect of regional economy and role of corporates after high-speed railway opening. In Proceedings of the 7th Symposium on International Economy, Monterrey, Mexico, 18–21 October 1994. (In Korean). [Google Scholar]
- Jun, Y.O.; Lee, K.S.; Park, J.R.; Kang, S.K. Effect and Policy Implication of KTX Opening; Issue Paper; Samsung Economic Research Institute: Seoul, Korea, 2004. (In Korean) [Google Scholar]
- Kim, K.S.; Park, J.D. Regional effects of Korea, China, Japan highway construction. J. Korean Reg. Sci. Assoc. 2006, 22, 77–94. (In Korean) [Google Scholar]
- Lee, S.; Kim, E. The effects of highway investments on production costs in the Korean manufacturing sector. Int. J. Urban Sci. 2014. [Google Scholar] [CrossRef]
- Hur, J.W. A critical review of the straw effects of the high-speed train. J. Korean Urban Manag. Assoc. 2010, 23, 59–74. (In Korean) [Google Scholar]
- Kim, Y.S. Impacts of new expressway on regional economies: Straw effect. J. Soc. Sci. Res. 2009, 35, 129–145. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, J.H.; Lee, J.H. Changes in medical utilization of cancer patients after the introduction of KTX. J. Korean Soc. Railw. 2010, 13, 236–243. [Google Scholar]
- Kim, J.Y.; Han, J.H. Straw effects of new highway construction on local population and employment growth. Habitat Int. 2016, 53, 123–132. [Google Scholar] [CrossRef]
- Jeong, C.H. A Study on Urban Characteristic According to Cluster of Analysis Self-Sufficiency in Seoul Metropolitan Area. Master’s Thesis, Gachon University, Seongnam, Korea, 2007. [Google Scholar]
- Ogilvy, A.A. The self-contained new town: Employment and population. Town Plan. Rev. 1968, 39, 38–54. [Google Scholar] [CrossRef]
- Won, K.H. A study on the impact of new highway construction on regional accessibility. J. Korean Urban Manag. Assoc. 2003, 16, 49–81. [Google Scholar]
- Kim, J.Y. The impact of highway construction on land price and transaction volume: A case of Central Inland Highway extension. Korea Real Estate Rev. 2011, 21, 69–88. (In Korean) [Google Scholar]
- Hassan, M.; Jun, C. A microscale simulation of land prices, household and employment growth using UrbanSim in Yongsan-Gu, Seoul. Int. J. Urban Sci. 2011, 15, 201–213. [Google Scholar] [CrossRef]
- Delmelle, E.C.; Casas, I. Evaluating the spatial equity of bus rapid transit-based accessibility patterns in a developing country: The case of Cali, Colombia. Transp. Policy 2012, 20, 36–46. [Google Scholar] [CrossRef]
- Fan, Y.; Guthrie, A.E.; Levinson, D.M. Impact of light rail implementation on labor market accessibility: A transportation equity perspective. J. Transp. Land Use 2012, 5, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Páez, A.; Scott, D.M.; Morency, C. Measuring accessibility: Positive and normative implementations of various accessibility indicators. J. Transp. Geogr. 2012, 25, 141–153. [Google Scholar] [CrossRef]
- Geurs, K.T.; van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- Lin, Y. Travel costs and urban specialization patterns: Evidence from China’s high speed railway system. J. Urban Econ. 2017, 98, 98–123. [Google Scholar] [CrossRef]
- Hornbeck, R.; Rotemberg, M. Railroads, Reallocation, and the Rise of American Manufacturing. Available online: https://www.nber.org/papers/w26594 (accessed on 28 July 2020).
Seoul | Busan | Daegu | Gwangju | Daejeon | ||
---|---|---|---|---|---|---|
Seoul | 0 | … | … | … | … | … |
Busan | 0 | |||||
Deagu | … | 0 | … | … | … | |
Gwangju | … | … | 0 | … | … | |
Deajeon | … | … | … | 0 | … | |
… | … | … | … |
Variable | Obs. | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
RD | 340 | 1.2269 | 0.6482 | 0.1724 | 2.5499 |
ktx1 | 340 | 0.7647 | 0.4248 | 0 | 1 |
lnecopopr | 340 | 1.7972 | 2.2399 | 0.2442 | 9.0465 |
enterm | 340 | 3.8919 | 0.0501 | 3.7861 | 4.0026 |
lnuniver | 340 | 0.0656 | 0.0135 | 0.0354 | 0.0835 |
lngland | 340 | 1.5473 | 0.3411 | 0.8311 | 2.0307 |
lnteachp | 340 | 6.0266 | 0.3336 | 5.4570 | 6.6495 |
lncpi | 340 | 2.5331 | 0.4217 | 1.6240 | 3.2625 |
lnbed | 340 | 4.4688 | 0.1274 | 4.2237 | 4.6367 |
lndtravel | 340 | 10.2548 | 0.6301 | 9.1152 | 11.4231 |
Variable: | RD | ktx1 | Lnecopopr | Enterm | Lnuniver | Lngland | Lnteachp | Lncpi | Lnbed | Lndtravel |
---|---|---|---|---|---|---|---|---|---|---|
RD | 1.00 | |||||||||
ktx1 | 0.01 | 1.00 | ||||||||
lnecopopr | 0.14 | 0.52 | 1.00 | |||||||
enterm | 0.27 | 0.16 | 0.29 | 1.00 | ||||||
lnuniver | 0.21 | 0.15 | 0.02 | 0.83 | 1.00 | |||||
lngland | −0.42 | −0.13 | −0.49 | −0.68 | −0.46 | 1.00 | ||||
lnteachp | 0.11 | 0.15 | 0.29 | 0.67 | 0.78 | −0.53 | 1.00 | |||
lncpi | −0.02 | 0.57 | 0.65 | 0.26 | 0.20 | −0.13 | 0.34 | 1.00 | ||
lnbed | 0.04 | 0.37 | 0.76 | 0.34 | −0.08 | −0.51 | 0.24 | 0.43 | 1.00 | |
lndtravel | 0.26 | 0.12 | 0.02 | 0.01 | 0.09 | 0.09 | −0.06 | 0.17 | −0.20 | 1.00 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Models | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
ktx1 | 0.2487 * | 0.0051 | −0.0927 | −0.0544 | 0.1724 |
(0.0914) | (0.0979) | (0.2408) | (0.5041) | (0.0782) | |
lnecopopr | −3.3319 | −2.1424 | 1.5325 | 0.1495 | 0.2227 |
(2.7746) | (2.1886) | (2.1513) | (1.5743) | (1.5489) | |
enterm | 79.5926 *** | −19.5364 | −105.1740 | 16.7092 | 79.8439 ** |
(8.4704) | (20.4470) | (57.2592) | (24.3095) | (18.1215) | |
lnuniver | −0.3994 | 0.7043 | 1.4213 | −0.5460 | −1.1135 |
(1.0236) | (0.9877) | (1.1881) | (0.4407) | (1.1551) | |
lngland | 0.4914 | 0.9390 | 0.1488 | −1.3867 | −0.3034 ** |
(0.3697) | (0.4091) | (0.3500) | (0.7822) | (0.0677) | |
lnteachp | −0.1161 | 0.0821 | −0.1019 | 0.7205 | 1.0843 * |
(0.4358) | (0.4213) | (0.6616) | (0.4893) | (0.4220) | |
lncpi | 1.7040 | −11.1162 | −0.3138 | −1.5278 | −3.3882 |
(0.9729) | (6.7491) | (0.9319) | (0.8912) | (12.2789) | |
lnbed | −0.5951 ** | 0.2715 | 0.4862 | 0.8623 ** | −0.0313 |
(0.1103) | (0.2129) | (0.2344) | (0.2340) | (0.1100) | |
lndtravel | −0.8399 | 46.1717 | 0.9922 | −0.7073 | −0.0375 |
(0.6030) | (32.1931) | (0.6256) | (0.4695) | (7.0598) | |
Constant | 12.4904 | −239.3733 | −9.9969 | 8.8060 | 11.0173 |
(9.9992) | (159.5139) | (13.7150) | (12.3647) | (9.9305) | |
Time control | Yes | Yes | Yes | Yes | Yes |
City control | Yes | Yes | Yes | Yes | Yes |
Observations | 68 | 68 | 68 | 68 | 68 |
R2 | 0.5091 | 0.5290 | 0.4514 | 0.5660 | 0.4334 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Models | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
ma1x | 0.7245 * | −0.0101 | −0.0679 | −0.0877 ** | −0.1451 *** |
(0.2284) | (0.0536) | (0.0292) | (0.0259) | (0.0227) | |
lnecopopr | −2.2998 | −2.1903 | 0.4580 | −1.0725 | 0.7993 |
(2.4783) | (2.3531) | (1.1651) | (1.7767) | (1.1750) | |
enterm | 56.6395 *** | −17.0541 | −91.1038 | 16.7524 | 105.5330 *** |
(5.2681) | (34.3528) | (47.7476) | (20.9843) | (10.2972) | |
lnuniver | −0.6220 | 0.5729 | 1.4035 | −0.6414 | −1.6614 |
(1.0777) | (1.3678) | (1.3002) | (0.4403) | (0.8283) | |
lngland | 0.7063 * | 0.9561 * | 0.0891 | −0.9684 | −0.1415 * |
(0.2788) | (0.3210) | (0.1883) | (0.4658) | (0.0465) | |
lnteachp | −0.0171 | 0.1074 | −0.3890 | 0.7213* | 1.2206 *** |
(0.4140) | (0.4618) | (0.5641) | (0.2902) | (0.1098) | |
lncpi | 1.2202 | −10.6831 | 0.9688 | −1.1942 | 0.2521 |
(0.7605) | (7.0185) | (1.3824) | (0.5079) | (4.7883) | |
lnbed | −0.1988 | 0.2413 | 0.1739 | 0.4128 | −0.6191 *** |
(0.1017) | (0.2755) | (0.1689) | (0.1896) | (0.1008) | |
lndtravel | −0.9590 | 44.8464 | 0.9061* | 0.0036 | −1.1955 |
(0.4829) | (33.3957) | (0.2859) | (0.4390) | (2.4965) | |
Time control | Y | Y | Y | Y | Y |
City control | Y | Y | Y | Y | Y |
Constant | 7.5511 | −232.5805 | −7.6162 | 10.2069 | 3.8688 |
(10.2808) | (169.2619) | (8.5216) | (7.0936) | (3.2043) | |
Observations | 68 | 68 | 68 | 68 | 68 |
R2 | 0.4829 | 0.5294 | 0.4586 | 0.6085 | 0.4705 |
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Models | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
ma2x | 24.6666 ** | −0.1102 | −3.6657 | −4.5840 | −4.4747 ** |
(5.5449) | (1.6010) | (2.5841) | (1.9957) | (1.3032) | |
ma3x | 0.0295 * | −0.0005 | −0.0043 | −0.0042 | −0.0061 *** |
(0.0097) | (0.0021) | (0.0028) | (0.0022) | (0.0010) | |
ma4x | 14.2537 * | −0.2065 | −0.9629 | −0.9985 * | −2.0066 *** |
(4.6376) | (0.8448) | (0.5260) | (0.4090) | (0.2180) | |
ma5x | 0.8242 * | −0.0166 | −0.1214 | −0.1074 | −0.1789 *** |
(0.2932) | (0.0646) | (0.0751) | (0.0612) | (0.0300) | |
ma6x | 0.0419 * | −0.0006 | −0.0027 | −0.0026 | −0.0059 *** |
(0.0147) | (0.0026) | (0.0016) | (0.0012) | (0.0007) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, M.; Liu, F.; Guo, X.; Li, J. Empirical Analysis for Impact of High-Speed Rail Construction on Interregional Dependency. Appl. Sci. 2020, 10, 5247. https://doi.org/10.3390/app10155247
Zheng M, Liu F, Guo X, Li J. Empirical Analysis for Impact of High-Speed Rail Construction on Interregional Dependency. Applied Sciences. 2020; 10(15):5247. https://doi.org/10.3390/app10155247
Chicago/Turabian StyleZheng, Meina, Feng Liu, Xiucheng Guo, and Juchen Li. 2020. "Empirical Analysis for Impact of High-Speed Rail Construction on Interregional Dependency" Applied Sciences 10, no. 15: 5247. https://doi.org/10.3390/app10155247
APA StyleZheng, M., Liu, F., Guo, X., & Li, J. (2020). Empirical Analysis for Impact of High-Speed Rail Construction on Interregional Dependency. Applied Sciences, 10(15), 5247. https://doi.org/10.3390/app10155247