Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
4. Contextualization into Existing Literature
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Costa De Oliveira, M.A.; D’Epifanio, A.; Ohnuki, H.; Mecheri, B. Platinum group metal-free catalysts for oxygen reduction reaction: Applications in microbial fuel cells. Catalysts 2020, 10, 475. [Google Scholar] [CrossRef]
- Kodali, M.; Herrera, S.; Kabir, S.; Serov, A.; Santoro, C.; Ieropoulos, I.; Atanassov, P. Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochim. Acta 2018, 265. [Google Scholar] [CrossRef] [PubMed]
- Mecheri, B.; Ficca, V.C.A.; Costa de Oliveira, M.A.; D’Epifanio, A.; Placidi, E.; Arciprete, F.; Licoccia, S. Facile synthesis of graphene-phthalocyanine composites as oxygen reduction electrocatalysts in microbial fuel cells. Appl. Catal. B Environ. 2018, 237, 699–707. [Google Scholar] [CrossRef]
- Costa de Oliveira, M.A.; Mecheri, B.; D’Epifanio, A.; Zurlo, F.; Licoccia, S. Optimization of PGM-free cathodes for oxygen reduction in microbial fuel cells. Electrochim. Acta 2020, 334, 135650. [Google Scholar] [CrossRef]
- Pepe Sciarria, T.; Merlino, G.; Scaglia, B.; D’Epifanio, A.; Mecheri, B.; Borin, S.; Licoccia, S.; Adani, F. Electricity generation using white and red wine lees in air cathode microbial fuel cells. J. Power Sources 2015, 274, 393–399. [Google Scholar] [CrossRef]
- Iannaci, A.; Mecheri, B.; D’Epifanio, A.; Lázaro Elorri, M.J.; Licoccia, S. Iron–nitrogen-functionalized carbon as efficient oxygen reduction reaction electrocatalyst in microbial fuel cells. Int. J. Hydrog. Energy 2016, 41, 19637–19644. [Google Scholar] [CrossRef]
- Drendel, G.; Mathews, E.R.; Semenec, L.; Franks, A.E. Microbial Fuel Cells, Related Technologies, and Their Applications. Appl. Sci. 2018, 8, 2384. [Google Scholar] [CrossRef] [Green Version]
- Pepè Sciarria, T.; de Oliveira, M.A.C.; Mecheri, B.; D’Epifanio, A.; Goldfarb, J.L.; Adani, F. Metal-free activated biochar as an oxygen reduction reaction catalyst in single chamber microbial fuel cells. J. Power Sources 2020, 462. [Google Scholar] [CrossRef]
- Costa de Oliveira, M.A.; Mecheri, B.; D’Epifanio, A.; Placidi, E.; Arciprete, F.; Valentini, F.; Perandini, A.; Valentini, V.; Licoccia, S. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems. J. Power Sources 2017, 356, 381–388. [Google Scholar] [CrossRef]
- Mecheri, B.; Gokhale, R.; Santoro, C.; Costa De Oliveira, M.A.; D’Epifanio, A.; Licoccia, S.; Serov, A.; Artyushkova, K.; Atanassov, P. Oxygen Reduction Reaction Electrocatalysts Derived from Iron Salt and Benzimidazole and Aminobenzimidazole Precursors and Their Application in Microbial Fuel Cell Cathodes. Acs Appl. Energy Mater. 2018, 1, 5755–5765. [Google Scholar] [CrossRef]
- Iannaci, A.; Mecheri, B.; D’Epifanio, A.; Licoccia, S. Sulfated zirconium oxide as electrode and electrolyte additive for direct methanol fuel cell applications. Int. J. Hydrog. Energy 2014, 39, 11241–11249. [Google Scholar] [CrossRef]
- Costa de Oliveira, M.A.; Ficca, V.C.A.; Gokhale, R.; Santoro, C.; Mecheri, B.; D’Epifanio, A.; Licoccia, S.; Atanassov, P. Iron(II) phthalocyanine (FePc) over carbon support for oxygen reduction reaction electrocatalysts operating in alkaline electrolyte. J. Solid State Electrochem. 2020. [Google Scholar] [CrossRef]
- Shahbazi Farahani, F.; Mecheri, B.; Majidi, M.R.; Placidi, E.; D’Epifanio, A. Carbon-supported Fe/Mn-based perovskite-type oxides boost oxygen reduction in bioelectrochemical systems. Carbon 2019, 145, 716–724. [Google Scholar] [CrossRef]
- Shahbazi Farahani, F.; Mecheri, B.; Reza Majidi, M.; Costa de Oliveira, M.A.; D’Epifanio, A.; Zurlo, F.; Placidi, E.; Arciprete, F.; Licoccia, S. MnOx-based electrocatalysts for enhanced oxygen reduction in microbial fuel cell air cathodes. J. Power Sources 2018, 390, 45–53. [Google Scholar] [CrossRef]
- Yang, J.; Tao, J.; Isomura, T.; Yanagi, H.; Moriguchi, I.; Nakashima, N. A comparative study of iron phthalocyanine electrocatalysts supported on different nanocarbons for oxygen reduction reaction. Carbon 2019, 145, 565–571. [Google Scholar] [CrossRef]
- Cheng, W.; Yuan, P.; Lv, Z.; Guo, Y.; Qiao, Y.; Xue, X.; Liu, X.; Bai, W.; Wang, K.; Xu, Q.; et al. Boosting defective carbon by anchoring well-defined atomically dispersed metal-N4 sites for ORR, OER, and Zn-air batteries. Appl. Catal. B: Environ. 2020, 260, 118198. [Google Scholar] [CrossRef]
- Santoro, C.; Gokhale, R.; Mecheri, B.; D’Epifanio, A.; Licoccia, S.; Serov, A.; Artyushkova, K.; Atanassov, P. Design of Iron(II) Phthalocyanine-Derived Oxygen Reduction Electrocatalysts for High-Power-Density Microbial Fuel Cells. ChemSusChem 2017, 10, 3243–3251. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Chung, H.T.; Martinez, U.; Lin, L.; Artyushkova, K.; Zelenay, P. PGM-Free ORR Catalysts Designed by Templating PANI-Type Polymers Containing Functional Groups with High Affinity to Iron. J. Electrochem. Soc. 2019, 166, F3240–F3245. [Google Scholar] [CrossRef]
- Raggio, M.; Mecheri, B.; Nardis, S.; D’Epifanio, A.; Licoccia, S.; Paolesse, R. Metallo-Corroles Supported on Carbon Nanostructures as Oxygen Reduction Electrocatalysts in Neutral Media. Eur. J. Inorg. Chem. 2019, 2019, 4760–4765. [Google Scholar] [CrossRef]
- Mecheri, B.; Iannaci, A.; D’Epifanio, A.; Mauri, A.; Licoccia, S. Carbon-supported zirconium oxide as a cathode for microbial fuel cell applications. ChemPlusChem 2016, 81, 80–85. [Google Scholar] [CrossRef]
- Praats, R.; Käärik, M.; Kikas, A.; Kisand, V.; Aruväli, J.; Paiste, P.; Merisalu, M.; Leis, J.; Sammelselg, V.; Zagal, J.H.; et al. Electrocatalytic oxygen reduction reaction on iron phthalocyanine-modified carbide-derived carbon/carbon nanotube composite electrocatalysts. Electrochim. Acta 2020, 334. [Google Scholar] [CrossRef]
- Komba, N.; Zhang, G.; Wei, Q.; Yang, X.; Prakash, J.; Chenitz, R.; Rosei, F.; Sun, S. Iron (II) phthalocyanine/N-doped graphene: A highly efficient non-precious metal catalyst for oxygen reduction. Int. J. Hydrog. Energy 2019, 44, 18103–18114. [Google Scholar] [CrossRef]
- Bhowmick, G.D.; Kibena-Põldsepp, E.; Matisen, L.; Merisalu, M.; Kook, M.; Kaärik, M.; Leis, J.; Sammelselg, V.; Ghangrekar, M.M.; Tammeveski, K. Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications. Sustain. Energy Fuels 2019, 3, 3525–3537. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Hua, X.; Chen, S. Tailoring molecular architectures of Fe phthalocyanine on nanocarbon supports for high oxygen reduction performance. J. Mater. Chem. A 2015, 3, 10013–10019. [Google Scholar] [CrossRef]
- Osmieri, L.; Monteverde Videla, A.H.A.; Ocón, P.; Specchia, S. Kinetics of Oxygen Electroreduction on Me-N-C (Me = Fe, Co, Cu) Catalysts in Acidic Medium: Insights on the Effect of the Transition Metal. J. Phys. Chem. C 2017, 121, 17796–17817. [Google Scholar] [CrossRef]
- Osmieri, L.; Escudero-Cid, R.; Monteverde Videla, A.H.A.; Ocón, P.; Specchia, S. Performance of a Fe-N-C catalyst for the oxygen reduction reaction in direct methanol fuel cell: Cathode formulation optimization and short-term durability. Appl. Catal. B Environ. 2017, 201, 253–265. [Google Scholar] [CrossRef]
- Hong, M.; Nie, J.; Zhang, X.; Zhang, P.; Meng, Q.; Huang, J.; Xu, Z.; Du, C.; Chen, J. Facile solution synthesis of FeNx atom clusters supported on nitrogen-enriched graphene carbon aerogels with superb electrocatalytic performance toward the oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 25557–25566. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Mecheri, B.; Iannaci, A.; D’Epifanio, A.; Licoccia, S. Iron/Polyindole-based Electrocatalysts to Enhance Oxygen Reduction in Microbial Fuel Cells. Electrochim. Acta 2016, 190, 388–395. [Google Scholar] [CrossRef]
- Mecheri, B.; Iannaci, A.; D’Epifanio, A.; Nieto-Monge, M.J.; Lazaro, M.J.; Licoccia, S. Iron-Based Electrocatalysts Supported on Nanostructured Carbon to Enhance Oxygen Reduction in Microbial Fuel Cells. Ecs Trans. 2016, 72, 9–15. [Google Scholar] [CrossRef]
- Osmieri, L.; Escudero-Cid, R.; Armandi, M.; Ocón, P.; Monteverde Videla, A.H.A.; Specchia, S. Effects of using two transition metals in the synthesis of non-noble electrocatalysts for oxygen reduction reaction in direct methanol fuel cell. Electrochim. Acta 2018, 266, 220–232. [Google Scholar] [CrossRef]
- Osmieri, L.; Escudero-Cid, R.; Monteverde Videla, A.H.A.; Ocón, P.; Specchia, S. Application of a non-noble Fe-N-C catalyst for oxygen reduction reaction in an alkaline direct ethanol fuel cell. Renew. Energy 2018, 115, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Dong, G.; Huang, M.; Guan, L. Iron phthalocyanine coated on single-walled carbon nanotubes composite for the oxygen reduction reaction in alkaline media. Phys. Chem. Chem. Phys. 2012, 14. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Toshimitsu, F.; Yang, Z.; Fujigaya, T.; Nakashima, N. Pristine carbon nanotube/iron phthalocyanine hybrids with a well-defined nanostructure show excellent efficiency and durability for the oxygen reduction reaction. J. Mater. Chem. A 2017, 5. [Google Scholar] [CrossRef]
- Taniguchi, T.; Tateishi, H.; Miyamoto, S.; Hatakeyama, K.; Ogata, C.; Funatsu, A.; Hayami, S.; Makinose, Y.; Matsushita, N.; Koinuma, M.; et al. A self-assembly route to an iron phthalocyanine/reduced graphene oxide hybrid electrocatalyst affording an ultrafast oxygen reduction reaction. Part. Part. Syst. Charact. 2013, 30. [Google Scholar] [CrossRef]
- Cui, L.; Lv, G.; Dou, Z.; He, X. Fabrication of iron phthalocyanine/graphene micro/nanocomposite by solvothermally assisted π-π Assembling method and its application for oxygen reduction reaction. Electrochim. Acta 2013, 106. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, R.; Yin, H.; Liu, F.; Hou, Y. Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale 2012, 4. [Google Scholar] [CrossRef]
- Arul, A.; Pak, H.; Moon, K.U.; Christy, M.; Oh, M.Y.; Nahm, K.S. Metallomacrocyclic–carbon complex: A study of bifunctional electrocatalytic activity for oxygen reduction and oxygen evolution reactions and their lithium-oxygen battery applications. Appl. Catal. B: Environ. 2018, 220, 488–496. [Google Scholar] [CrossRef]
- Zhao, F.; Harnisch, F.; Schröder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 2005, 7, 1405–1410. [Google Scholar] [CrossRef]
- Ratso, S.; Sougrati, M.T.; Käärik, M.; Merisalu, M.; Rähn, M.; Kisand, V.; Kikas, A.; Paiste, P.; Leis, J.; Sammelselg, V.; et al. Effect of ball-milling on the oxygen reduction reaction activity of iron and nitrogen co-doped carbide-derived carbon catalysts in acid media. ACS Appl. Energy Mater. 2019, 2, 7952–7962. [Google Scholar] [CrossRef]
- Praats, R.; Kruusenberg, I.; Käärik, M.; Joost, U.; Aruväli, J.; Paiste, P.; Saar, R.; Rauwel, P.; Kook, M.; Leis, J.; et al. Electroreduction of oxygen in alkaline solution on iron phthalocyanine modified carbide-derived carbons. Electrochim. Acta 2019, 299, 999–1010. [Google Scholar] [CrossRef]
- Bui, T.T.; Le, X.Q.; To, D.P.; Nguyen, V.T. Investigation of typical properties of nanocrystalline iron powders prepared by ball milling techniques. Adv. Nat. Sci. Nanosci. Nanotechnol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Tung, D.K.; Manh, D.H.; Phong, L.T.H.; Nam, P.H.; Nam, D.N.H.; Anh, N.T.N.; Nong, H.T.T.; Phan, M.H.; Phuc, N.X. Iron Nanoparticles Fabricated by High-Energy Ball Milling for Magnetic Hyperthermia. J. Electron. Mater. 2016, 45, 2644–2650. [Google Scholar] [CrossRef]
- Ratso, S.; Käärik, M.; Kook, M.; Paiste, P.; Aruväli, J.; Vlassov, S.; Kisand, V.; Leis, J.; Kannan, A.M.; Tammeveski, K. High performance catalysts based on Fe/N co-doped carbide-derived carbon and carbon nanotube composites for oxygen reduction reaction in acid media. Int. J. Hydrog. Energy 2019, 44, 12636–12648. [Google Scholar] [CrossRef]
- Proietti, E.; Dodelet, J.-P. Ballmilling of Carbon Supports to Enhance the Performance of Fe-based Electrocatalysts for Oxygen Reduction in PEM Fuel Cells. Esc Trans. 2008, 393–404. [Google Scholar] [CrossRef]
- Ramaswamy, N.; Mukerjee, S. Electrocatalysis of oxygen reduction on non-precious metallic centers at high pH Environments. Ecs Trans. 2010, 33, 1777–1785. [Google Scholar] [CrossRef]
- Song, Q.S.; Chiu, C.H.; Chan, S.L.I. Effects of ball milling on the physical and electrochemical characteristics of nickel hydroxide powder. J. Appl. Electrochem. 2006, 36, 97–103. [Google Scholar] [CrossRef]
- Eguchi, T.; Kanamoto, Y.; Tomioka, M.; Tashima, D.; Kumagai, S. Effect of ball milling on the electrochemical performance of activated carbon with a very high specific surface area. Batteries 2020, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.S.; Shim, W.G.; Ryu, D.W.; Hwang, M.J.; Moon, H. Effect of ball milling on electrochemical characteristics of walnut shell-based carbon electrodes for EDLCs. Microporous Mesoporous Mater. 2012, 155, 274–280. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Han, B.; Zhao, K.Y.; Gao, M.H.; Wang, Z.Q.; Yang, X.M.; Chen, X.Y. Surface modification of carbon materials by nitrogen/phosphorus co-doping as well as redox additive of ferrous ion for cooperatively boosting the performance of supercapacitors. Ionics 2020. [Google Scholar] [CrossRef]
- Sancho, H.; Zhang, Y.; Liu, L.; Barevadia, V.G.; Wu, S.; Zhang, Y.; Huang, P.-W.; Zhang, Y.; Wu, T.-H.; You, W.; et al. NiCo2Se4 Nanowires as a High-Performance Bifunctional Oxygen Electrocatalyst. J. Electrochem. Soc. 2020, 167, 056503. [Google Scholar] [CrossRef]
- Tovini, M.F.; Patil, B.; Koz, C.; Uyar, T.; Yilmaz, E. Nanohybrid structured RuO2/Mn2O3/CNF as a catalyst for Na-O2 batteries. Nanotechnology 2018, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.G.; Hwang, H.J.; Kwon, O.; Jeon, O.S.; Jang, J.; Shul, Y.G. Synthesis and application of hexagonal perovskite BaNiO3 with quadrivalent nickel under atmospheric and low-temperature conditions. Chem. Commun. 2016, 52, 10731–10734. [Google Scholar] [CrossRef] [PubMed]
- Schaber, P.M.; Colson, J.; Higgins, S.; Thielen, D.; Anspach, B.; Brauer, J. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochim. Acta 2004, 424, 131–142. [Google Scholar] [CrossRef]
- Yurtseven, H.; Kaya, M.A.; Altindal, A.; Şener, M.K. Synthesis, thermal, and electrical properties of stilbene-bridged polymeric zinc phthalocyanine. Des. Monomers Polym. 2014, 17, 58–68. [Google Scholar] [CrossRef] [Green Version]
- Monteverde Videla, A.H.A.; Osmieri, L.; Armandi, M.; Specchia, S. Varying the morphology of Fe-N-C electrocatalysts by templating Iron Phthalocyanine precursor with different porous SiO2 to promote the Oxygen Reduction Reaction. Electrochim. Acta 2015, 177, 43–50. [Google Scholar] [CrossRef]
- Manivannan, M.; Nadu, T.; Rajendran, S.; Nadu, T.; Nadu, T. Investigation of Inhibitive Action of Urea- Zn2+ System in the Corrosion Control of Carbon Steel in Sea Water. Int. J. Eng. Sci. Technol. 2011, 3, 8048–8060. [Google Scholar]
- Valvo, M.; Liivat, A.; Eriksson, H.; Tai, C.W.; Edström, K. Iron-Based Electrodes Meet Water-Based Preparation, Fluorine-Free Electrolyte and Binder: A Chance for More Sustainable Lithium-Ion Batteries? ChemSusChem 2017, 10, 2431–2448. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.F.M.; Soares, O.S.G.P.; Figueiredo, J.L.; Pereira, M.F.R. Effect of ball milling on the catalytic activity of cryptomelane for VOC oxidation. Environ. Technol. (UK) 2020, 41, 117–130. [Google Scholar] [CrossRef]
- Artyushkova, K.; Rojas-Carbonell, S.; Santoro, C.; Weiler, E.; Serov, A.; Awais, R.; Gokhale, R.R.; Atanassov, P. Correlations between Synthesis and Performance of Fe-Based PGM-Free Catalysts in Acidic and Alkaline Media: Evolution of Surface Chemistry and Morphology. Acs Appl. Energy Mater. 2019, 2, 5406–5418. [Google Scholar] [CrossRef]
- Martinaiou, I.; Wolker, T.; Shahraei, A.; Zhang, G.R.; Janßen, A.; Wagner, S.; Weidler, N.; Stark, R.W.; Etzold, B.J.M.; Kramm, U.I. Improved electrochemical performance of Fe-N-C catalysts through ionic liquid modification in alkaline media. J. Power Sources 2018, 375, 222–232. [Google Scholar] [CrossRef]
- Jaouen, F.; Marcotte, S.; Dodelet, J.P.; Lindbergh, G. Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of iron acetate adsorbed on various carbon supports. J. Phys. Chem. B 2003, 107, 1376–1386. [Google Scholar] [CrossRef]
- Cheng, Y.; Wu, X.; Veder, J.; Thomsen, L.; Jiang, S.P.; Wang, S. Tuning the Electrochemical Property of the Ultrafine Metaloxide Nanoclusters by Iron Phthalocyanine as Efficient Catalysts for Energy Storage and Conversion. Energy Environ. Mater. 2019, 2, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Yan, X.; Pang, H.; Wang, J.; Sun, D.; Wei, S.; Xu, L.; Tang, Y. Isolated Fe Single Atomic Sites Anchored on Highly Steady Hollow Graphene Nanospheres as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Adv. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Zamani, P.; Choi, J.Y.; Hassan, F.M.; Jiang, G.; Higgins, D.C.; Zhang, Y.; Hoque, M.A.; Chen, Z. In Situ Polymer Graphenization Ingrained with Nanoporosity in a Nitrogenous Electrocatalyst Boosting the Performance of Polymer-Electrolyte-Membrane Fuel Cells. Adv. Mater. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
Sample Label | Ball Milling | Pyrolysis |
---|---|---|
FeNC | NO | NO |
FeNC_P | NO | 900 °C, 1 h, Ar |
FeNC_BM1 | 1 h | NO |
FeNC_BM1_P | 1 h | 900 °C, 1 h, Ar |
FeNC_BM3 | 6 cycles (total time 3 h) | NO |
FeNC_BM3_P | 6 cycles (total time 3 h) | 900 °C, 1 h, Ar |
FeNC_BM6 | 12 cycles (total time 6 h) | NO |
FeNC_BM6_P | 12 cycles (total time 6 h) | 900 °C, 1 h, Ar |
Sample | Weight Loss 1 (wt.%) | T1mid (°C) | Weight Loss 2 (wt.%) | T2mid (°C) | Weight Loss 3 (wt.%) | T3mid (°C) | Total Loss (wt.%) |
---|---|---|---|---|---|---|---|
FeNC | 25.6 | 187 | 13.5 | 227 | 25.0 | 340 | 75.0 |
FeNC_BM1 | 31.0 | 186 | 11.9 | 223 | 23.4 | 329 | 80.3 |
FeNC_BM3 | 31.1 | 183 | 14.8 | 219 | 24.3 | 323 | 82.3 |
FeNC_BM6 | 27.8 | 184 | 15.0 | 223 | 25.7 | 333 | 80.7 |
Urea | 55.0 | 207 | 2.6 | 242 | 31.1 | 353 | 97.1 |
FePc | 7.2 | 188 | 20.3 | 360 | 20.0 | 617 | 60.4 |
BPO | 7.4 | 56 | 3.6 | 82 | 5.4 | 156 | 33.5 |
Wavenumber (cm−1) | Assignment | ||
---|---|---|---|
FeNC_BM1 | FeNC_BM3 | FeNC_BM6 | |
3443 | 3447 | 3454 | ν (N-H) |
3347 | 3348 | 3347 | ν (N-H) |
1682 | 1684 | 1682 | ν (C=O) |
1629 | 1630 | 1631 | δ (N-H) |
1602 | 1599 | 1604 | δ(C=O)/(NH2) |
1467 | 1467 | 1467 | ν (C-N) |
1153 | 1158 | 1158 | δ (C–H) (in-plane + isoindole) |
1117 | 1120 | 1120 | Isoindole totally symmetric |
717 | 721 | 719 | δ (C–H) (out-of-plane) |
Sample | ECSA (m2g−1) | Epr (V) | Jpr (mAcm−2) | Jretention (%) |
---|---|---|---|---|
FeNC | 19 | 0.58 | 0.21 | 12 |
FeNC_P | 146 | 0.65 | 0.38 | 30 |
FeNC_BM1 | 54 | 0.63 | 0.22 | 12 |
FeNC_BM1_P | 69 | 0.60 | 0.31 | 50 |
FeNC_BM3 | 80 | 0.61 | 0.37 | 20 |
FeNC_BM3_P | 70 | 0.51 | 0.35 | 75 |
FeNC_BM6 | 46 | 0.73 | 0.32 | 65 |
FeNC_BM6_P | 24 | 0.40 | 0.26 | 80 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa de Oliveira, M.A.; Machado Pico, P.P.; da Silva Freitas, W.; D’Epifanio, A.; Mecheri, B. Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity. Appl. Sci. 2020, 10, 5278. https://doi.org/10.3390/app10155278
Costa de Oliveira MA, Machado Pico PP, da Silva Freitas W, D’Epifanio A, Mecheri B. Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity. Applied Sciences. 2020; 10(15):5278. https://doi.org/10.3390/app10155278
Chicago/Turabian StyleCosta de Oliveira, Maida Aysla, Pedro Pablo Machado Pico, Williane da Silva Freitas, Alessandra D’Epifanio, and Barbara Mecheri. 2020. "Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity" Applied Sciences 10, no. 15: 5278. https://doi.org/10.3390/app10155278
APA StyleCosta de Oliveira, M. A., Machado Pico, P. P., da Silva Freitas, W., D’Epifanio, A., & Mecheri, B. (2020). Iron-Based Electrocatalysts for Energy Conversion: Effect of Ball Milling on Oxygen Reduction Activity. Applied Sciences, 10(15), 5278. https://doi.org/10.3390/app10155278