Microstructure and Nanohardness of Ti-48Al-2Cr Alloy Solidified under High Pressure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Phase Composition of the Ti-48Al-2Cr Alloy
3.2. Microstructure of the Ti-48Al-2Cr Alloy Solidified under Different Processes
3.3. Nanohardness of High Pressure Solidified Ti-48Al-2Cr Alloy
3.4. The Mechanism of the Relationship between Dislocation Density, Microstructure Refinement, and Properties under High Pressure
4. Conclusions
- (1)
- In the process of high-pressure solidification, the volume fraction of interdendritic γ phase decreases while that of the lamellar structure increases.
- (2)
- After high-pressure solidification, the content of Cr and Al increased and the B2 phase disappeared due to the inhibition of element diffusion by high pressure.
- (3)
- The strengthening mechanism of the alloy is solution strengthening and dislocation strengthening after high-pressure solidification. Solidified at 5 GPa and 1873 K, the hardness reached 5.54 GPa. The hardness decreases, and dislocation strengthening plays a dominant role in the superheated state.
Author Contributions
Funding
Conflicts of Interest
References
- Ye, X.C.; Xiao, K.Q.; Cao, R.X.; Wu, H.H.; Zhao, G.W.; Li, B. Microstructure evolution and microhardness of TiAl based alloy blade by vacuum suction casting. Vacuum 2019, 163, 186–193. [Google Scholar] [CrossRef]
- Bewlay, B.P.; Nag, S.; Suzuki, A.; Weimer, M.J. TiAl alloys in commercial aircraft engines. Mater. High Temp. 2016, 33, 549–559. [Google Scholar] [CrossRef]
- Wang, G.; Wu, P.; Wang, W.; Zhu, D.D.; Tan, C.W.; Su, Y.S.; Shi, X.Y.; Cao, W. Brazing Ti-48Al-2Nb-2Cr Alloys with Cu-Based Amorphous Alloy Filler. Appl. Sci. 2018, 8, 920. [Google Scholar] [CrossRef] [Green Version]
- Yenera, T.; Erdoğan, A.; Gök, M.S.; Zeytin, S. Nb and B effect on mechanical properties of Ti-Al based intermetallic materials. Vacuum 2019, 169, 108867. [Google Scholar] [CrossRef]
- Han, J.K.; Li, X.; Dippenaar, R.; Liss, K.D.; Kawasaki, M. Microscopic plastic response in a bulk nano-structured TiAl intermetallic compound processed by high-pressure torsion. Mater. Sci. Eng. A 2018, 714, 84–92. [Google Scholar] [CrossRef]
- Tan, Y.M.; Chen, R.R.; Fang, H.Z.; Liu, Y.L.; Ding, H.S.; Su, Y.Q.; Guo, J.J.; Fu, H.Z. Microstructure evolution and mechanical properties of TiAl binary alloys added with SiC fibers. Intermetallics 2018, 98, 69–78. [Google Scholar] [CrossRef]
- Cao, G.H.; Russell, A.M.; Oertel, C.G.; Skrotzki, W. Microstructural evolution of TiAl-based alloys deformed by high-pressure torsion. Acta Mater. 2015, 98, 103–112. [Google Scholar] [CrossRef]
- Lapin, J.; Pelachova, T.; Bajana, O. High temperature deformation behaviour and microstructure of cast in-situ TiAl matrix composite reinforced with carbide particles. J. Alloys Compd. 2019, 797, 754–755. [Google Scholar] [CrossRef]
- Tian, S.W.; Jiang, H.T.; Guo, W.Q.; Zhang, G.H.; Zeng, S.W. Hot deformation and dynamic recrystallization behavior of TiAl-based alloy. Intermetallics 2019, 112, 106521. [Google Scholar] [CrossRef]
- Dong, S.L.; Liu, T.; Li, Y.J.; Wang, P.; Wang, Q. Hot deformation processing capability of Fe-contained high Nb TiAl-based alloy. Vacuum 2019, 159, 391–399. [Google Scholar] [CrossRef]
- Phillip, D.; Helmut, C.; Svea, M.; David, H. Impact of Alloying on Stacking Fault Energies in γ-TiAl. Appl. Sci. 2017, 7, 1193. [Google Scholar] [CrossRef] [Green Version]
- Niu, H.Z.; Chen, Y.Y.; Kong, F.T.; Lin, J.P. Microstructure evolution, hot deformation behavior and mechanical properties of Ti-43Al-6Nb-1B alloy. Intermetallics 2012, 31, 249–256. [Google Scholar] [CrossRef]
- Zhu, D.D.; Dong, D.; Ni, C.Y.; Zhang, D.F.; Zhou, Z.Z.; Wang, H.W.; Wei, Z.J. Effect of wheel speed on the microstructure and nanohardness of rapidly solidified Ti-48Al-2Cr alloy. Mater. Charact. 2015, 99, 243–247. [Google Scholar] [CrossRef]
- Wang, Z.H.; Sun, H.X.; Du, Y.L.; Yuan, J.T. Effects of Powder Preparation and Sintering Temperature on Properties of Spark Plasma Sintered Ti-48Al-2Cr-8Nb Alloy. Metals 2019, 9, 861. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Wei, Z.J.; Jia, Y.D.; Yu, Z.S.; Prashanth, K.G.; Yang, S.L.; Li, C.G.; Huang, L.X.; Eckert, J. Mechanism of formation of fibrous eutectic Si and thermal conductivity of SiCp/Al-20Si composites solidified under high pressure. J. Alloys Compd. 2017, 709, 329–336. [Google Scholar] [CrossRef]
- Wei, Z.J.; Ma, P.; Wang, H.W.; Zou, C.M.; Scudino, S.; Song, K.K.; Prashanth, K.G.; Jiang, W.; Eckert, J. The thermal expansion behaviour of SiCp/Al-20Si composites solidified under high pressures. Mater. Des. 2015, 65, 387–394. [Google Scholar] [CrossRef]
- Jie, J.C.; Zou, C.M.; Wang, H.W.; Wei, Z.J. Microstructure evolution of Al-Mg alloy during solidification under high pressure. Mater. Lett. 2010, 64, 869–871. [Google Scholar] [CrossRef]
- Menshikova, S.G.; Brazhkin, V.V.; Lad’yanov, V.I.; PushkarevDcdsv, B.E. Features of the Al90Y10 alloy structure during solidification under high pressure. J. Cryst. Growth 2019, 524, 125–164. [Google Scholar] [CrossRef]
- Xi, L.; Rian, D.; Ayumi, S.; Takahisa, S.; Yuji, H.; Mark, R.; Suzuki, H.; Akita, K.; Funakoshi, K.I.; Liss, K.D. Lattice parameter evolution during heating of Ti-45Al-7.5Nb-0.25/0.5C alloys under atmospheric and high pressures. Intermetallics 2018, 102, 120–131. [Google Scholar]
- Zou, C.M.; Jiang, W.; Wang, H.W.; Hu, Z.L.; Wei, Z.J. Modeling of yield strength in binary hypoeutectic alloy under high pressure solidification. J. Alloys Compd. 2016, 686, 727–732. [Google Scholar] [CrossRef]
- Kashchiev, D.; Rosmalen, G.M. Effect of pressure on nucleation in bulk solutions and solutions in pores and droplets. J. Colloid Interf. Sci. 1995, 169, 214–219. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, K.K.M. From soft to superhard: Fifty years of experiments on cold-compressed graphite. J. Superhard Mater. 2012, 34, 360–370. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.J.; Panzik, J.E.; Kiefer, B.; Lee, K.K.M. Crystal structure of graphite under room-temperature compression and decompression. Sci. Per-UK 2012, 2, 520. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Liu, Z.T.Y.; Khare, S.V.; Collins, S.A.; Zhang, J.Z.; Wang, L.P.; Zhao, Y.S. Thermal equation of state of silicon carbide. Appl. Phys. Lett. 2016, 108, 061906. [Google Scholar] [CrossRef] [Green Version]
- Efthimiopoulos, I.; Liu, Z.T.Y.; Khare, S.V.; Sarin, P.; Lochbiler, T.; Tsurkan, V.; Loidl, A.; Popov, D.; Wang, Y. Pressure-induced transition in the multiferroic CoCr2O4 spinel. Phys. Rev. B 2015, 92, 064108. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.H.; Ran, Z.; Wei, Z.J.; Zou, C.M.; Wang, H.W.; Gouchi, J.; Uwatoko, Y. The formation of bulk β-Al3Ni phase in eutectic Al-5.69wt%Ni alloy solidified under high pressure. J. Alloys Compd. 2018, 742, 670–675. [Google Scholar] [CrossRef]
- Wei, Z.J.; Jiang, W.; Zou, C.M.; Wang, H.W.; Zhao, W.Q. Microstructural evolution and mechanical strengthening mechanism of the high pressure heat treatment (HPHT) on Al-Mg alloy. J. Alloys Compd. 2017, 692, 629–633. [Google Scholar] [CrossRef]
- Vladislav, D.; Yury, G.; Sergey, D. Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 2000, 76, 2214. [Google Scholar]
- John, Ł.; Janeta, M.; Rajczakowska, M.; Ejfler, J.; Łydzba, D.; Szafert, S. Synthesis and microstructural properties of the scaffold based on a 3-(trimethoxysilyl) propyl methacrylate-POSS hybrid towards potential tissue engineering applications. RSC Adv. 2016, 6, 66037–66047. [Google Scholar] [CrossRef] [Green Version]
- David, J.S.; André, L.M.C.; Margareth, S.A. Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact. 2007, 58, 380–389. [Google Scholar]
- Wang, W.; Chen, W.; Peng, D.L. Effect of heat treatment on microstructure and mechanical properties of Ti-48Al-2Cr alloy. Trans. Mater. Heat Treat. 2019, 6, 75–80. [Google Scholar]
- Wang, H.K.; Ren, Y.; He, D.W.; Xu, C. Force analysis and pressure quantitative measurement for the high pressure cubic cell. Acta Phys. Sin. 2017, 66, 090702. [Google Scholar]
- Xu, S.; Zhang, H.; Yang, G.; Lian, Y.F.; Xu, X.J.; He, J.P.; Lin, J.P. Phase equilibria in the Ti-Al-Cr system at 1000 °C. J. Alloys Compd. 2020, 826, 154236. [Google Scholar] [CrossRef]
- Xu, R. The effect of high pressure on solidification microstructure of Al-Ni-Y alloy. Mater. Lett. 2005, 59, 2818–2820. [Google Scholar] [CrossRef]
- Yun, D.; Lin, X.P.; Xu, R.; Zheng, R.G.; Fan, Z.B.; Liu, S.J.; Wang, Z. Microstructure and compression deformation behavior in the quasicrystal-reinforced Mg-8Zn-1Y alloy solidified under super-high pressure. J. Rare Earth. 2014, 32, 1048–1055. [Google Scholar]
- Han, X.M.; Dong, Y.; Zhao, T.B. Microstructure and compression deformation behavior in the in the quasicrystal-reinforced Ma-6Zn-2Y alloy solidified under super-high pressure at room-temperature. Adv. Mat. Res. 2014, 887, 311–314. [Google Scholar]
- Sharma, G.; Ramanujan, R.; Tiwari, G. Instability mechanisms in lamellar microstructures. Acta Mater. 2000, 48, 875. [Google Scholar] [CrossRef]
- Lu, Y.Y.; Yamada, J.; Nakamura, J.; Hidemi, K. Effect of B2-ordered phase on the deformation behavior of Ti-Mo-Al alloys at elevated temperature. J. Alloys Compd. 2017, 696, 130–135. [Google Scholar] [CrossRef]
- Li, M.G.; Xiao, S.L.; Chen, Y.Y.; Xu, L.J.; Tian, J. The effect of carbon addition on the high-temperature properties of β solidification TiAl alloys. J. Alloys Compd. 2019, 775, 441–448. [Google Scholar] [CrossRef]
- Lee, W.S.; Chen, T.H.; Hwang, H.H. Impact response and microstructural evolution of biomedical titanium alloy under various temperatures. Metall. Mater. Trans. A 2008, 39, 1435–1448. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Tang, Z.X.; Yang, D.Z.; Li, D.M. Microscopic analysis on tensile fracture behavior of Ti3AlNb alloy with various microstructures. Trans. Nonferrous Metal. Soc. 1996, 6, 66–105. [Google Scholar]
Sample | Nanohardness (GPa) |
---|---|
Ambient pressure, 1873 K | 3.45 ± 0.19 |
5 GPa, 1873 K | 5.54 ± 0.21 |
5 GPa, 1973 K | 4.48 ± 0.27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, D.; Liu, L.; Zhu, D.; Liu, Y.; Wang, Y.; Wang, X.; Wei, Z. Microstructure and Nanohardness of Ti-48Al-2Cr Alloy Solidified under High Pressure. Appl. Sci. 2020, 10, 5394. https://doi.org/10.3390/app10155394
Dong D, Liu L, Zhu D, Liu Y, Wang Y, Wang X, Wei Z. Microstructure and Nanohardness of Ti-48Al-2Cr Alloy Solidified under High Pressure. Applied Sciences. 2020; 10(15):5394. https://doi.org/10.3390/app10155394
Chicago/Turabian StyleDong, Duo, Li Liu, Dongdong Zhu, Yang Liu, Ye Wang, Xiaohong Wang, and Zunjie Wei. 2020. "Microstructure and Nanohardness of Ti-48Al-2Cr Alloy Solidified under High Pressure" Applied Sciences 10, no. 15: 5394. https://doi.org/10.3390/app10155394
APA StyleDong, D., Liu, L., Zhu, D., Liu, Y., Wang, Y., Wang, X., & Wei, Z. (2020). Microstructure and Nanohardness of Ti-48Al-2Cr Alloy Solidified under High Pressure. Applied Sciences, 10(15), 5394. https://doi.org/10.3390/app10155394