Comprehensive Chemical Characterization of the Pistacia vera Fruits through Original NMR Quantification Methods
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reported Tables
2.2. Reagents and Materials
2.3. Samples
2.4. Sample Preparation
2.5. NMR References
2.6. NMR Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Quali-Quantitative Composition
3.2. Statistical Analysis and Geographical Differentiation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Substance | Symbol Code | Quantification Units | Analysed Solution |
---|---|---|---|
Trigonelline | TRG | concentration (mM) | PWS |
Formiate | FA | concentration (mM) | PWS |
Inosine | INO | concentration (mM) | PWS |
Uridine-di-phosphate | UDP | concentration (mM) | PWS |
Uridine | URI | concentration (mM) | PWS |
Indole-3-Acetic acid | I3AA | concentration (mM) | PWS |
Phenylalanine and Triptophan | PHE + TRP | concentration (mM) | PWS |
Tyrosine | TYR | concentration (mM) | PWS |
Gallate | GA | concentration (mM) | PWS |
Fumarate | FUMA | concentration (mM) | PWS |
Shikimic acid | SHA | concentration (mM) | PWS |
Quercetin-3-O-Glucoside | Q3G | concentration (mM) | PWS |
Rafinose | RAF | concentration (mM) | PWS |
Sucrose | SUC | concentration (mM) | PWS |
Galactose | GAL | concentration (mM) | PWS |
Glucose | GLC | concentration (mM) | PWS |
Xylose | XIL | concentration (mM) | PWS |
Fructose | FRC | concentration (mM) | PWS |
Proline | PRO | concentration (mM) | PWS |
Myo-inositol | MYI | concentration (mM) | PWS |
Carnitine | CAR | concentration (mM) | PWS |
Choline derivates | CHN | concentration (mM) | PWS |
N-Methyl-4-trans-hydroxy proline | MHP | concentration (mM) | PWS |
γ-ammino butirrate | GABA | concentration (mM) | PWS |
Asparagine | ASN | concentration (mM) | PWS |
Aspartate | ASP | concentration (mM) | PWS |
Citrate | CA | concentration (mM) | PWS |
Malate | MAL | concentration (mM) | PWS |
Glutamate | GLU | concentration (mM) | PWS |
Arginine | ARG | concentration (mM) | PWS |
Acetate | ACA | concentration (mM) | PWS |
Isoleucine | ILE | concentration (mM) | PWS |
Leucine | LEU | concentration (mM) | PWS |
Valine | VAL | concentration (mM) | PWS |
Alanine | ALA | concentration (mM) | PWS |
Propan-1,2-diol | PDO | concentration (mM) | PWS |
Piruvate | PA | concentration (mM) | PWS |
Acetyl-lactate | ACLC | concentration (mM) | PWS |
Lactate+ Threonine | LAC + THR | concentration (mM) | PWS |
Tri-acyl-glycerols | TG% | percent of the total glyceridic fraction | PO |
1,2-Di-acyl-glycerols | 1,2 DG% | percent of the total glyceridic fraction | PO |
1,3-Di-acyl-glycerols | 1,3 DG% | percent of the total glyceridic fraction | PO |
Saturated fatty esters | SAT% | percent out of the total fatty esters | PO |
Oleic fatty esters | O% | percent out of the total fatty esters | PO |
Linoleic fatty esters | L% | percent out of the total fatty esters | PO |
Linolenic fatty esters | Ln% | percent out of the total fatty esters | PO |
Methylated vegetal sterols | STR | molecules out of thousands of total molecules | PO |
References
- Anderson, K.A.; Smith, B.W. Use of chemical profiling to differentiate geographic growing origin of raw pistachios. J. Agric. Food Chem. 2005, 53, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Oddone, M.; Aceto, M.; Baldizzone, M.; Musso, D.; Osella, D. Authentication and traceability study of hazelnuts from Piedmont, Italy. J. Agric. Food Chem. 2009, 57, 3404–3408. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.H.; Sabaté, J. Nuts and coronary heart disease, an epidemiological perspective. Br. J. Nutr. 2006, 96, S61–S67. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.B.; Colditz, G.A.; Rosner, B.A. Frequent nut consumption and risk of coronary heart disease in women, prospective cohort study. BMJ 1998, 317, 1341–1345. [Google Scholar] [CrossRef] [Green Version]
- Moure, A.; Cruz, J.M.; Franco, D.; Dominguez, J.M.; Sineiro, J.; Dominguez, H.; Núñez, M.J.; Parajó, J.C. Natural antioxidants from residual sources. Food Chem. 2001, 72, 145–171. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Yu-Poth, S.; Sabaté, J.; Ratcliffe, H.E.; Zahao, G.; Etherton, T.D. Nuts and their bioactive constituents, effects on serum lipids and other factors that affect disease risk. Am. J. Clin. Nutr. 1999, 70, S504–S511. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAO Production Yearbook 2003; Food and Agriculture Organization: New York, NY, USA, 2005. [Google Scholar]
- Okay, Y. The comparison of some pistachio cultivars regarding their fat, fatty acids and protein content. Gartenbauwissenschaft 2002, 67, 107–113. [Google Scholar]
- Arena, E.; Campisi, S.; Fallico, B.; Maccarone, E. Distribution of fatty acids and phytosterols as a criterion to discriminate geographic origin of pistachio seeds. Food Chem. 2007, 104, 403–408. [Google Scholar] [CrossRef]
- Chahed, T.; Bellila, A.; Dhifi, W.; Hamrouni, I.; M’hamdi, B.; Kchouk, M.E.; Marzouk, B. Pistachio (Pistacia vera) seed oil composition, Geographic situation and variety effects. Grasas Aceites 2008, 59, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Arena, K.; Cacciola, F.; Mangraviti, D.; Zoccali, M.; Rigano, F.; Marino, N.; Dugo, P.; Mondello, L. Determination of the polyphenolic fraction of Pistacia vera L. kernel extracts by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry detection. Anal. Bioanal. Chem. 2019, 411, 4819–4829. [Google Scholar] [CrossRef]
- Salvo, A.; La Torre, G.L.; Di Stefano, V.; Capocchiano, V.; Mangano, V.; Saija, E.; Pellizzeri, V.; Casale, K.E.; Dugo, G. Fast UPLC/PDA determination of squalene in Sicilian, P.D.O. pistachio from Bronte, Optimization of oil extraction method and analytical characterization. Food Chem. 2017, 221, 1631–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigano, F.; Stead, S.; Mangraviti, D.; Jandova, R.; Davy, P.; Marino, N.; Mondello, L. Use of an “Intelligent Knife” (iknife), Based on the Rapid Evaporative Ionization Mass Spectrometry Technology, for Authenticity Assessment of Pistachio Samples. Food Anal. Meth. 2019, 12, 569–571. [Google Scholar] [CrossRef] [Green Version]
- Rotondo, A.; Salvo, A.; Gallo, V.; Rastrelli, L.; Dugo, G. Quick unreferenced NMR quantification of Squalene in vegetable oils. Eur. J. Lipid Sci. Technol. 2017, 119, 1700151. [Google Scholar] [CrossRef] [Green Version]
- Rotondo, A.; Salvo, A.; Giuffrida, D.; Dugo, G.; Rotondo, E. NMR analysis of aldehydes in sicilian extra-virgin olive oils by DPFGSE techniques. Atti Accad. Pelorit. Dei Pericol. 2011, 89, 1–7. [Google Scholar] [CrossRef]
- Salvo, A.; Rotondo, A.; Mangano, V.; Grimaldi, M.; Stillitano, I.; D’Ursi, A.M.; Dugo, G.; Rastrelli, L. High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS-NMR) as quick and direct insight of almonds. Nat. Prod. Res. 2020, 34, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Belton, P.S.; Colquhoun, I.J.; Kemsley, E.K.; Delgadillo, I.; Roma, P.; Dennis, M.J.; Sharman, M.; Holmes, E.; Nicholson, J.K.; Spraul, M. Application of chemometrics to 1H NMR spectra of apples juices, discrimination between apple varieties. Food Chem. 1998, 61, 207–221. [Google Scholar] [CrossRef]
- Sopelana, P.; Arizabaleta, I.; Ibargoitia, M.L.; Guillén, M.D. Characterisation of the lipidic components of margarines by 1H Nuclear Magnetic Resonance. Food Chem. 2013, 141, 3357–3364. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Goicoechea, E.; Manzanos, M.J.; Guillén, M.D. A method based on 1H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Res. Int. 2014, 66, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Venkatachalam, M.; Zelena, M.; Cacciola, F.; Ceslova, L.; Girard-Valenciennes, E.; Clerc, P.; Dugo, P.; Mondello, L.; Fouillaud, M.; Rotondo, A.; et al. Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry. J. Food Comp. Anal. 2018, 67, 38–47. [Google Scholar] [CrossRef]
- Klikarová, J.; Rotondo, A.; Cacciola, F.; Česlová, L.; Dugo, P.; Mondello, L.; Rigano, F. The Phenolic Fraction of Italian Extra Virgin Olive Oils, Elucidation Through Combined Liquid Chromatography and NMR Approaches. Food Anal. Met. 2019, 8, 1759–1770. [Google Scholar] [CrossRef]
- Zur, K.; Heier, A.; Blaas, K.W.; Fauhl-Hassek, C. Authenticity control of pistachios based on 1H- and 13C-NMR spectroscopy and multivariate statistics. Eur. Food Res. Technol. 2008, 227, 969–977. [Google Scholar] [CrossRef]
- Delfini, M.; Capuani, G.; Di Cocco, M.E.; Sciubba, F.; Avanzato, D.; Vaccaro, A.; Meli, M.; Tzareva, I.; Terziev, I. NMR-based metabolomic analysis for the evaluation of different treatments on two pistachio cultivars. Acta Hortic. 2011, 912, 203–210. [Google Scholar] [CrossRef]
- Sciubba, F.; Capuani, G.; Di Cocco, M.E.; Avanzato, D.; Delfini, M. Nuclear magnetic resonance analysis of water soluble metabolites allows the geographic discrimination of pistachios (Pistacia vera). Food Res. Int. 2014, 62, 66–73. [Google Scholar] [CrossRef]
- Sciubba, F.; Avanzato, D.; Vaccaro, A.; Capuani, G.; Spagnoli, M.; Di Cocco, M.E.; Tzareva, I.N.; Delfini, M. Monitoring of pistachio (Pistacia Vera) ripening by high field nuclear magnetic resonance spectroscopy. Nat. Prod. Res. 2017, 31, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Liland, K.H. Multivariate methods in metabolomics—From pre-processing to dimension reduction and statistical analysis. Trend Anal. Chem. 2011, 30, 827–841. [Google Scholar] [CrossRef]
- Cagliani, L.R.; Scano, P.; Consonni, R. NMR-based metabolomics: Quality and authenticity of plant-based foods. In Modern Magnetic Resonance; Webb, G.A., Ed.; AG 2017; Springer: Cham, Switzerland, 2017; Chapter 27; pp. 1–20. [Google Scholar] [CrossRef]
- Trimigno, A.; Marincola, F.C.; Dellarosa, N.; Picone, G.; Laghi, L. Definition of food quality by NMR-based foodomics. Curr. Opin. Food Sci. 2015, 4, 99–104. [Google Scholar] [CrossRef]
- Consonni, R.; Cagliani, L.R. Nuclear Magnetic Resonance and Chemometrics to Assess Geographical Origin and Quality of Traditional Food Products. In Advances in Food and Nutrition Research; Elsevier Inc.: London, UK, 2010; Volume 59, ISSN 1043-4526. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar]
- Mo, H.; Raftery, D. Pre-SAT180, a simple and effective method for residual water suppression. J. Magn. Reson. 2008, 190, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Boyer, R.D.; Johnson, R.; Krishnamurthy, K. gHSQCAD/CRISIS-gHSQC. J. Magn. Reson. 2003, 165, 253–259. [Google Scholar] [CrossRef]
- Stott, K.; Stonehouse, J.; Keeler, J.; Hwang, T.L.; Shaka, A.J. Excitation Sculpting. J. Am. Chem. Soc. 1995, 117, 4199–4200. [Google Scholar] [CrossRef]
- Rotondo, A.; Mannina, L.; Salvo, A. Multiple Assignment Recovered Analysis (MARA) NMR for a Direct Food Labeling, the Case Study of Olive Oils. Food Anal. Methods 2019, 12, 1238–1245. [Google Scholar] [CrossRef]
- Salvo, A.; Rotondo, A.; La Torre, G.L.; Cicero, N.; Dugo, G. Determination of 1,2/1,3-diglycerides in Sicilian extra-virgin olive oils by 1H-NMR over a one-year storage period. Nat. Prod. Res. 2017, 31, 822–828. [Google Scholar] [CrossRef] [PubMed]
- NMR library (NMR Suite 8.3) within the Chemomix Software 2001–2017, version 8.31. Available online: https://www.chenomx.com/ (accessed on 9 August 2020).
- Biological Magnetic Resonance Data Bank. Available online: http://www.bmrb.wisc.edu/tools/choose_pulse_info.php (accessed on 9 August 2020).
- Rotondo, A.; Barresi, S.; Cusumano, M.; Rotondo, E.; Donato, P.; Mondello, L. NMR characterisation and dynamic behaviour of [Pt(bipy)(R-Thiourea)2] Cl2 and [Pt(phen)(R-Thiourea)2] Cl2 complexes. Inorg. Chim. Acta 2014, 410, 1–10. [Google Scholar] [CrossRef]
Substance | Symbol Code |
---|---|
Trigonelline | TRG |
Formiate | FA |
Inosine | INO |
Uridine-di-phosphate | UDP |
Uridine | URI |
Indole-3-Acetic acid | I3AA |
Phenylalanine and Triptophan | PHE + TRP |
Tyrosine | TYR |
Gallate | GA |
Fumarate | FUMA |
Shikimic acid | SHA |
Quercetin-3-O-Glucoside | Q3G |
Rafinose | RAF |
Sucrose | SUC |
Galactose | GAL |
Glucose | GLC |
Xylose | XIL |
Fructose | FRC |
Proline | PRO |
Myo-inositol | MYI |
Carnitine | CAR |
Choline derivates | CHN |
N-Methyl-4-trans-hydroxy proline | MHP |
γ-ammino butirrate | GABA |
Asparagine | ASN |
Aspartate | ASP |
Citrate | CA |
Malate | MAL |
Glutamate | GLU |
Arginine | ARG |
Acetate | ACA |
Isoleucine | ILE |
Leucine | LEU |
Valine | VAL |
Alanine | ALA |
Propan-1,2-diol | PDO |
Piruvate | PA |
Acetyl-lactate | ACLC |
Lactate + Threonine | LAC + THR |
Tri-acyl-glycerols | TG% |
1,2-Di-acyl-glycerols | 1,2 DG% |
1,3-Di-acyl-glycerols | 1,3 DG% |
Saturated fatty esters | SAT% |
Oleic fatty esters | O% |
Linoleic fatty esters | L% |
Linolenic fatty esters | Ln% |
Methylated vegetal sterols | STR |
Provenance | California | Turkey | Iran | Greece | Sicily | ||||
---|---|---|---|---|---|---|---|---|---|
Sample Group | S_1 | S_2 | S_3 | S_4 | S_5 | S_6 | S_7 | S_8 | S_9 |
FA | 0.21 ± 0.01 | 0.18± 0.05 | 0.05 ± 0.03 | 0.11 ± 0.01 | 0.03± 0.02 | 0.11± 0.01 | 0.11± 0.01 | 0.04± 0.01 | 0.05± 0.01 |
GA | nd | nd | 0.23 ± 0.01 | 0.27 ± 0.04 | 0.34 ± 0.02 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.08 ± 0.01 | 0.09 ± 0.01 |
FUMA | 0.57 ± 0.01 | 0.44 ± 0.02 | 0.38 ± 0.02 | 0.86 ± 0.01 | 0.76 ± 0.01 | 1.35 ± 0.02 | 1.41 ± 0.06 | 0.56 ± 0.04 | 0.79 ± 0.02 |
SHA | 0.48 ± 0.02 | 0.45 ± 0.06 | 2.4 ± 0.01 | 4.9 ± 0.01 | 3.6 ± 0.02 | 0.75 ± 0.03 | 1.2 ± 0.1 | 2.85 ± 0.05 | 1.59 ± 0.09 |
RAF | 24.1 ± 0.2 | 23.4 ± 0.6 | 20.0 ± 0.3 | 26 ± 1 | 24.6 ± 0.7 | 25.6 ± 0.5 | 35.4 ± 0.8 | 19.3 ± 0.3 | 21.1 ± 0.4 |
SUC | 92.0 ± 0.4 | 64 ± 3 | 38 ± 2 | 64.0 ± 0.8 | 55 ± 1 | 63 ± 1 | 41 ± 1 | 40.0 ± 0.7 | 36.0 ± 0.5 |
GAL | 5.4 ± 0.2 | 6.2 ± 0.1 | 4.7 ± 0.2 | 5.2 ± 0.3 | 4.9 ± 0.2 | 4.6 ± 0.1 | 6.4 ± 0.4 | 4.7 ± 0.1 | 3.9 ± 0.1 |
GLC | 8.1 ± 0.6 | 29 ± 2 | 5.29 ± 0.05 | 6.5 ± 0.2 | 6.5 ± 0.3 | 4.74 ± 0.9 | 3.7 ± 0.1 | 6.3 ± 0.2 | 4.24 ± 0.02 |
PRO | 3.8 (1) | 4.4 ± 0.1 | 6.2 ± 0.4 | 10.5 ± 0.2 | 10.0 ± 0.2 | 3.7 ± 0.2 | 3.7 ± 0.1 | 5.0 ± 0.1 | 3.6 ± 0.1 |
MYI | 6.7 ± 0.3 | 8.2 ± 0.7 | 8.0 (8) | 13.7 (4) | 10.43 (9) | 4.7 (2) | 6.6 (1) | 5.6 (2) | 3.4 (2) |
MHP | 25.53 ± 0.08 | 24.6 ± 0.1 | 12.5 ± 0.1 | 19.7 ± 0.1 | 15.0 ± 0.1 | 30.9 ± 0.2 | 27.9 ± 0.3 | 13.6 ± 0.3 | 9.7 ± 0.1 |
GABA | 4.07 ± 0.04 | 5.72 ± 0.06 | 2.9 ± 0.2 | 7.6 ± 0.1 | 4.7 ± 0.6 | 7.3 ± 0.1 | 8.0 ± 0.1 | 3.6 ± 0.1 | 4.19 ± 0.08 |
CA | 10.5 ± 0.2 | 7.8 ± 0.2 | 13.08 ± 0.08 | 15.1 ± 0.5 | 17.6 ± 0.3 | 15.5 ± 0.4 | 15.0 ± 0.1 | 7.0 ± 0.3 | 9.2 ± 0.2 |
MAL | 3.83 ± 0.04 | 2.9 ± 0.7 | 3.0 ± 0.3 | 5.8 ± 0.3 | 7.2 ± 0.4 | 4.4 ± 0.2 | 4.7 ± 0.4 | 5.0 ± 0.2 | 5.6 ± 0.2 |
ARG | 5.76 ± 0.04 | 6.8 ± 0.1 | 4.6 ± 0.2 | 11.5 ± 0.3 | 8.6 ± 0.2 | 9.3 ± 0.3 | 12.3 ± 0.3 | 4.5 ± 0.2 | 3.21 ± 0.2 |
ILE | 0.61 ± 0.01 | 0.75 ± 0.02 | 0.29 ± 0.01 | 0.53 ± 0.01 | 0.31 ± 0.01 | 0.45 ± 0.01 | 0.58 ± 0.01 | 0.45 ± 0.02 | 0.29 ± 0.01 |
ALA | 5.68 ± 0.06 | 5.6 ± 0.3 | 3.5 ± 0.4 | 8.5 ± 0.7 | 4.90 ± 0.05 | 2.41 ± 0.02 | 4.73 ± 0.06 | 4.0 ± 0.2 | 1.93 ± 0.04 |
1,2DG% | 2.4 ± 0.3 | 4.8 ± 0.3 | 2.0 ± 0.1 | 1.9 ± 0.1 | 2.2 ± 0.1 | 2.07 ± 0.06 | 1.85 ± 0.06 | 2.30 ± 0.03 | 2.2 ± 0.1 |
1,3DG% | 3.0 ± 0.3 | 3.3 ± 0.3 | 1.90 ± 0.07 | 1.8 ± 0.1 | 1.94 ± 0.05 | 1.0 ± 0.5 | 1.61 ± 0.06 | 1.1 ± 0.4 | 1.7 ± 0.5 |
O% | 54.0 ± 0.7 | 57 ± 1 | 71.9 ± 0.7 | 71.2 ± 0.2 | 70.5 ± 0.5 | 56 ± 2 | 59 ± 2 | 70 ± 3 | 70 ± 2 |
L% | 28.4 ± 0.8 | 25 ± 1 | 13 ± 1 | 13.5 ± 0.4 | 14.0 ± 0.6 | 27 ± 2 | 27 ± 1 | 12 ± 1 | 15 ± 1 |
Ln% | 0.7 ± 0.1 | 0.65 ± 0.05 | 0.36 ± 0.02 | 0.45 ± 0.03 | 0.45 ± 0.02 | 0.52 ± 0.07 | 0.52 ± 0.1 | 0.4 ± 0.1 | 0.5 ± 0.1 |
STR | 10.1 ± 0.1 | 8.38 (8) | 5.86 (8) | 6.0 ± 0.2 | 6.3 ± 0.3 | 8.7 ± 0.8 | 8.2 ± 0.2 | 7.5 ± 0.1 | 7.3 ± 0.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotondo, A.; Rigano, F.; Mondello, L. Comprehensive Chemical Characterization of the Pistacia vera Fruits through Original NMR Quantification Methods. Appl. Sci. 2020, 10, 5523. https://doi.org/10.3390/app10165523
Rotondo A, Rigano F, Mondello L. Comprehensive Chemical Characterization of the Pistacia vera Fruits through Original NMR Quantification Methods. Applied Sciences. 2020; 10(16):5523. https://doi.org/10.3390/app10165523
Chicago/Turabian StyleRotondo, Archimede, Francesca Rigano, and Luigi Mondello. 2020. "Comprehensive Chemical Characterization of the Pistacia vera Fruits through Original NMR Quantification Methods" Applied Sciences 10, no. 16: 5523. https://doi.org/10.3390/app10165523
APA StyleRotondo, A., Rigano, F., & Mondello, L. (2020). Comprehensive Chemical Characterization of the Pistacia vera Fruits through Original NMR Quantification Methods. Applied Sciences, 10(16), 5523. https://doi.org/10.3390/app10165523