Fatigue Testing of Shear Reinforcement in Prestressed Concrete T-Beams of Bridges
Abstract
:1. Introduction
2. Experimental Investigations
2.1. Test Specimens
2.2. Test Setup and Test Procedure
3. Test Results
4. Comparison with Existing Approaches
5. Discussion
- As already shown for I-beams [40,42,43], the cyclic loading of prestressed T-Beams led to a successive failure of the stirrup reinforcement with the simultaneous redistribution of shear forces to adjacent stirrups, associated with a clearly visible increase in deformations and crack widths. Due to pronounced crack pattern and increase in deformation, there was a good indication of the following fatigue shear failure. The different shear crack pattern of T-beams (flexural shear crack) compared to beams with I-profile (diagonal shear cracks in the web) did not have a significant influence on the general shear fatigue behavior. With the ongoing damage process, a rearrangement of the truss model into a model with a direct compression strut was observed.
- As a result of the successive failure of the stirrups, the stress in the adjacent stirrups increased gradually. This concerns stress ranges as well as stresses under upper load.
- The approach, according to EC 2, for determining the strut angle for fatigue () overestimates the actual stress ranges of the stirrups in I- and T-beams measured in the tests, and consequently underestimates the number of cycles until fatigue failure.
- The improved proposal of θfat = θstat,EC2 [46] was implemented in the first amendment to the guideline for the assessment of existing concrete bridges in Germany [15] with I-shaped cross sections and a shear reinforcement ratio up to 0.35%. This allowed for a verification of the shear fatigue resistance or reduction in the strengthening measures in many cases [17,48]. Tests on I-beams with higher shear reinforcement ratios and the tests on prestressed T-Beams presented in this paper confirm that θstat = θfat is also reasonable for members with I- and T-cross sections with a shear reinforcement up to 0.67% [42,43].
6. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Naumann, J. Brücken und Schwerverkehr-Eine Bestandsaufnahme. Bauingenieur 2010, 85, 1–9. [Google Scholar]
- Grünberg, J.; Hansen, M.; Liebig, J.P. Ermüdungsbeanspruchungen von Betonbrücken unter zunehmendem Schwerverkehr. Beton- und Stahlbetonbau 2007, 102, 596–606. [Google Scholar] [CrossRef]
- Schellenberg, K.; Vogel, T.; Chèvre, M.; Alvarez, M. Assessment of Bridges on the Swiss National Roads. Struct. Eng. Int. 2013, 23, 402–410. [Google Scholar] [CrossRef]
- Lantsoght, E.O.L.; Van Der Veen, C.; Walraven, J.; De Boer, A. Recommendations for the Shear Assessment of Reinforced Concrete Slab Bridges from Experiments. Struct. Eng. Int. 2013, 23, 418–426. [Google Scholar] [CrossRef] [Green Version]
- Hegger, J.; Karakas, A.; Pelke, E.; Schölch, U. Zur Querkraftgefährdung bestehender Spannbetonbrücken. Beton- und Stahlbetonbau 2009, 104, 737–746. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung e.V. Eurocode 2: Bemessung und Konstruktion von Stahlbeton-und Spannbetontragwerken-Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau. Deutsche Fassung EN 1992-1-1:2004 + AC: 2010; (DIN EN 1992-1-1:2011-01); Beuth: Berlin, Germany, 2011. [Google Scholar]
- Deutsches Institut für Normung e.V. Nationaler Anhang-National festgelegte Parameter-Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken-Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau; (DIN EN 1992-1-1/NA:2013-04); Beuth: Berlin, Germany, 2013. [Google Scholar]
- Deutsches Institut für Normung e.V. Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken-Teil 2: Betonbrücken-Bemessungs- und Konstruktionsregeln. Deutsche Fassung EN 1992-2:2005 + AC: 2008; (DIN EN 1992-2:2010-12); Beuth: Berlin, Germany, 2010. [Google Scholar]
- Deutsches Institut für Normung e.V. Nationaler Anhang-National festgelegte Parameter-Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken-Teil 2: Betonbrücken – Bemessungs- und Konstruktionsregeln; (DIN EN 1992-2/NA:2013-04); Beuth: Berlin, Germany, 2013. [Google Scholar]
- Deutsches Institut für Normung e.V. Spannbeton. Richtlinie für Bemessung und Ausführung; (DIN 4227); Beuth: Berlin, Germany, 1953. [Google Scholar]
- Bundesministerium für Verkehr. Zusätzliche Bestimmungen zu DIN 4227 für Brücken aus Spannbeton; (Richtlinie); Bundesministerium für Verkehr: Berlin, Germany, 1969.
- Deutsches Institut für Normung e.V. DIN-Fachbericht 102-Betonbrücken. Ausgabe März 2003; (Fachbericht 102:2003-03); Beuth: Berlin, Germany, 2003. [Google Scholar]
- Deutsches Institut für Normung e.V. Eurocode 2: Planung von Stahlbeton- und Spannbetontragwerken-Teil 2: Betonbrücken. Deutsche Fassung EN 1992-2:1996; (DIN EN 1992-2:1997-10); Beuth: Berlin, Germany, 1997. [Google Scholar]
- Bundesministerium für Verkehr, Bau und Stadtentwicklung Abteilung Straßenbau. Richtlinie zur Nachrechnung von Straßenbrücken im Bestand. Nachrechnungsrichtlinie; BMVBS: Bonn, Germany, 2011.
- Bundesministerium für Verkehr und digitale Infrastruktur Abteilung Straßenbau. Richtlinie zur Nachrechnung von Straßenbrücken im Bestand 1. Ergänzung. Nachrechnungsrichtlinie; BMVI: Bonn, Germany, 2015.
- Marzahn, G.; Hegger, J.; Maurer, R.; Zilch, K.; Dunkelberg, D.; Kolodziejczyk, A.; Teworte, F. Die Nachrechnung von Betonbrücken-Fortschreibung der Nachrechnungsrichtlinie. In BetonKalender 2015; Bergmeister, E.K., Fingerloos, F., Wörner, J.-D., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2014; pp. 819–904. ISBN 9783433603406. [Google Scholar]
- Teworte, F.; Hegger, J.; Herbrand, M. Structural Assessment of Concrete Bridges in Germany—Shear Resistance under Static and Fatigue Loading. Struct. Eng. Int. 2015, 25, 266–274. [Google Scholar] [CrossRef]
- Herbrand, M.; Kueres, D.; Claßen, M.; Hegger, J. Einheitliches Querkraftmodell zur Bemessung von Stahl- und Spannbetonbrücken im Bestand. Beton- und Stahlbetonbau 2016, 111, 58–67. [Google Scholar] [CrossRef]
- Herbrand, M. Shear Strength Models for Reinforced and Prestressed Concrete Members. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2017. [Google Scholar]
- Hegger, J.; Maurer, R.; Fischer, O.; Zilch, K. Beurteilung der Querkraft- und Torsionstragfähigkeit von Brücken im Bestand-Erweiterte Bemessungsansätze; Bundesanstalt für Straßenwesen: Bergisch Gladbach, Germany, 2018. [Google Scholar]
- Herbrand, M.; Adam, V.; Hegger, J. Shear Tests on Prestressed Concrete Continuous Beams. In Advances in Concrete Bridges: Design, Construction, Evaluation, and Rehabilitation; ACI Special Publication 333; Kim, Y.J., Myers, J.J., Nanni, A., Eds.; American Concrete Institute: Salt Lake City, UT, USA, 2019; pp. 119–135. ISBN 978-1-64195-078-7. [Google Scholar]
- Gehrlein, S.F.; Fischer, O. Full-scale shear capacity testing of an existing prestressed concrete bridge. Civ. Eng. Des. 2019, 1, 64–73. [Google Scholar] [CrossRef]
- Hegger, J.; Adam, V.; Teworte, F.; Kerkeni, N. Erweiterung der Nachrechnungsrichtlinie für Massivbrücken. In Brückenbau im Fokus; Ingenieurkammer-Bau NRW, Ed.; Ingenieurkammer-Bau NRW: Dusseldorf, Germany, 2019; pp. 53–77. [Google Scholar]
- Fédération Internationale du Béton. Fib Model Code for Concrete Structures 2010; Ernst & Sohn: Berlin, Germany, 2013. [Google Scholar]
- Marcheggiani, L.; Clementi, F.; Formisano, A. Static and dynamic testing of highway bridges: A best practice example. J. Civ. Struct. Health Monit. 2019, 10, 43–56. [Google Scholar] [CrossRef]
- Hansen, M. Determination and assessment of fatigue stresses on concrete bridges. Struct. Concr. 2020. [Google Scholar] [CrossRef]
- Suryanto, B.; Staniforth, G. Monitoring the Shear Fatigue Response of Reinforced Concrete Beams Subjected to Moving Loads using Digital Image Correlation. Civ. Eng. Dimens. 2019, 21, 6–12. [Google Scholar] [CrossRef]
- Suryanto, B.; Staniforth, G.; Kim, J.; Gebreyouhannes, E.; Chijiwa, N.; Fujiyama, C.; Woodward, P.K. Investigating the Mechanism of Shear Fatigue in Reinforced Concrete Beams subjected to Pulsating and Moving Loads using Digital Image Correlation. MATEC Web Conf. 2019, 258, 03015. [Google Scholar] [CrossRef] [Green Version]
- Cladera, A.; Ribas, C.; Oller, E.; Marí, A. Application of the Compression Chord Capacity Model to predict the fatigue shear strength of reinforced concrete members without stirrups. In CMMoST 2019: 5th International Conference on Mechanical Models in Structural Engineering; Editorial Club Universitario, Ed.; Editorial Club Universitario: San Vicente, Alicante, 2019; pp. 95–102. [Google Scholar]
- Classen, M. Shear Crack Propagation Theory (SCPT) – The mechanical solution to the riddle of shear in RC members without shear reinforcement. Eng. Struct. 2020, 210. [Google Scholar] [CrossRef]
- Banjara, N.K.; Ramanjaneyulu, K. Effect of Deficiencies on Fatigue Life of Reinforced Concrete Beams. ACI Struct. J. 2020, 117, 31–44. [Google Scholar] [CrossRef]
- Lantsoght, E.O.L.; Van Der Veen, C.; Koekkoek, R.; Sliedrecht, H. Fatigue Testing of Transversely Prestressed Concrete Decks. ACI Struct. J. 2019, 116, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Lantsoght, E.O.L.; Koekkoek, R.; Van Der Veen, C.; Sliedrecht, H. Fatigue Assessment of Prestressed Concrete Slab-Between-Girder Bridges. Appl. Sci. 2019, 9, 2312. [Google Scholar] [CrossRef] [Green Version]
- Fathalla, E.; Tanaka, Y.; Maekawa, K. Effect of Crack Orientation on Fatigue Life of Reinforced Concrete Bridge Decks. Appl. Sci. 2019, 9, 1644. [Google Scholar] [CrossRef] [Green Version]
- Remitz, J.; Empelmann, M. Cyclic tensile tests on prestressing strands embedded in concrete. Mater. Struct. 2020, 53, 53. [Google Scholar] [CrossRef]
- Fischer, O. Prestressed Concrete Bridges in Germany – Overview of Current New Structures, Re-analysis and Research Activities to Preserve the Existing Infrastructure Network. Procedia Eng. 2016, 156, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Fischer, O.; Müller, A.; Lechner, T.; Wild, M.; Kessner, K. Ergebnisse und Erkenntnisse zu durchgeführten Nachrechnungen von Betonbrücken in Deutschland. Beton- und Stahlbetonbau 2014, 109, 107–127. [Google Scholar] [CrossRef]
- Hegger, J.; Maurer, R.; Zilch, K.; Herbrand, M.; Kolodziejczyk, A.; Dunkelberg, D. Beurteilung der Querkrafttragfähigkeit des Längssystems von Spannbetonbrücken im Bestand. Bauingenieur 2014, 89, 500–510. [Google Scholar]
- Teworte, F.; Hegger, J. Querkraftermüdung von Spannbetonträgern ohne Querkraftbewehrung. Beton- und Stahlbetonbau 2013, 108, 34–46. [Google Scholar] [CrossRef]
- Teworte, F.; Hegger, J. Ermüdung von Spannbetonträgern mit Bügelbewehrung unter Querkraftbeanspruchung. Beton- und Stahlbetonbau 2013, 108, 475–486. [Google Scholar] [CrossRef]
- Teworte, F.; Hegger, J. Shear fatigue of prestressed concrete beams-load-bearing behaviour and modified design approaches. In Towards a Rational Understanding of Shear in Beams and Slabs: Fib Bulletin 85: Workshop in Zurich, Switzerland September 2016; Bayrak, O., Fernández Ruiz, M., Kaufmann, W., Muttoni, A., Eds.; Fédération internationale du béton (fib): Lausanne, Switzerland, 2018; pp. 239–253. ISBN 978-2-88394-125-0. [Google Scholar] [CrossRef]
- Hillebrand, M.; Hegger, J. Ermüdungsversuche an profilierten Spannbetonträgern unter Querkraftbeanspruchung. Beton- und Stahlbetonbau 2019, 114, 565–574. [Google Scholar] [CrossRef]
- Hillebrand, M.; Teworte, F.; Hegger, J. Shear fatigue of prestressed I-beams with shear reinforcement. Struct. Concr. 2020. [Google Scholar] [CrossRef]
- Stahlwerk Annahütte Max Aicher GmbH & Co., KG. Allgemeine bauaufsichtliche Zulassung Z-12.5-96: Annahütte Ankerstabstahl St 900/1100 mit Gewinderippen; Deutsches Institut für Bautechnik: Berlin, Germany, 2015. [Google Scholar]
- Maurer, R.; Block, K.; Dreier, F. Ermüdungsfestigkeit von Betonstahl-Bestimmung mit dem Interaktiven Verfahren. Bauingenieur 2010, 85, 17–28. [Google Scholar]
- Teworte, F. Zum Querkrafttragverhalten von Spannbetonträgern unter Ermüdungsbeanspruchung. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2014. [Google Scholar]
- Hegger, J.; Sherif, A.; Gortz, S. Investigation of Pre- and Postcracking Shear Behavior of Prestressed Concrete Beams Using Innovative Measuring Techniques. ACI Struct. J. 2004, 101, 183–192. [Google Scholar] [CrossRef]
- Hegger, J.; Marzahn, G.; Teworte, F.; Herbrand, M. Zur Anwendung des Hauptzugspannungskriteriums bei der Nachrechnung bestehender Spannbetonbrücken. Beton- und Stahlbetonbau 2015, 110, 82–95. [Google Scholar] [CrossRef]
- CEN/TC 250/SC 2/WG 1. prEN 1992-1-1/2020-06: Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules for Buildings, Bridges and Civil Engineering Structures; Fifth Draft by the Project Team SC2.T1; European Committee for Standardization: Brussels, Belgium, 2020; unpublished. [Google Scholar]
Beam No. | ρw | fym | ftm | Es Modulus | Pm |
---|---|---|---|---|---|
(%) | (N/mm2) | (N/mm2) | (N/mm2) | (kN) | |
T-22-1 | 0.22 | 524 | 625 | 197,330 | 330 |
T-22-2 | 330 | ||||
T-33-1 | 0.33 | 524 | 625 | 197,330 | 330 |
T-33-2 | 330 | ||||
T-33-3 | 330 | ||||
T-33-4 | 330 | ||||
T-67-1 | 0.67 | 524 | 625 | 197,330 | 500 |
T-67-2 | 500 | ||||
T-67-3 | 500 | ||||
T-67-4 | 500 |
Beam No. | Age | fcm,cyl | fctm,sp | Ec Modulus | Vmax | Vmin | Cycles Ni | Σ Ni | Status of Test |
---|---|---|---|---|---|---|---|---|---|
(day) | (N/mm2) | (N/mm2) | (N/mm2) | (kN) | (kN) | (∙103) | (∙103) | ||
T-22-1a | 26 (S) | 42.9 | 3 | 25,900 | 217 | - | 0.001 | 0.001 | initial crack |
- | - | - | - | 238.7 | 98.8 | 7,396 | 7,396 | stopped | |
62 (E) | 44.6 | 3.6 | 25,900 | 617 | - | 0.001 | 7,396 | residual | |
T-22-2a | 42 (S) | 41.3 | 2.9 | 25,600 | 192.2 | - | 0.001 | 0.001 | initial crack |
- | - | - | - | 238.7 | 63.7 | 1,496 | 1,496 | cyclic fail. | |
T-22-2b | 69 (E) | 41 | 3.1 | 25,100 | 238.7 | 63.7 | 1,697 | 3,193 | cyclic fail. |
T-33-1a | 65 (S) | 46.6 | 3.6 | 28,500 | 197.5 | - | 0.001 | 0.001 | initial crack |
- | - | - | - | 238.9 | 55.1 | 4,300 | 4,300 | no failure | |
111 (E) | 47.5 | 3.3 | - | 282.2 | 98.4 | 2,075 | 6,375 | cyclic fail. | |
T-33-2a | 53 (S) | 45.2 | 3.7 | 26,700 | 202.2 | - | 0.001 | 0.001 | initial crack |
- | - | - | - | 282.1 | 53.3 | 1,071 | 1,071 | cyclic fail. | |
T-33-2b | 67 (E) | 45 | 3.5 | 26,800 | 282.1 | 53.3 | 301 | 1,372 | cyclic fail. |
T-33-3a | 27 (S) | 43.8 | 3.2 | 26,300 | 232.2 | - | 0.001 | 0.001 | initial crack |
- | - | - | - | 355.7 | 171.9 | 1,291 | 1,291 | no failure | |
T-33-3b | 47 (E) | 45.8 | 3.4 | 26,800 | 355.7 | 171.9 | 618 | 1,909 | cyclic fail. |
T-33-4a | 14 (S) | 43.9 | 3.1 | 27,600 | 217.2 | - | 0.001 | 0.001 | initial crack |
31 (E) | 44.3 | 3.4 | 27,600 | 327.2 | 98.4 | 1,863 | 1,863 | cyclic fail. | |
T-67-1a | 18 (S) | 45.5 | 3.6 | 26,800 | 252.2 | - | 0.001 | 0.001 | initial crack |
68 (E) | - | 3 | - | 378.2 | 73.7 | 3,112 | 3,112 | cyclic fail. | |
T-67-2a | 50 (S) | 41.9 | 3.7 | 26,200 | 252.2 | - | 0.001 | 0.001 | initial crack |
77 (E) | - | - | - | 429.7 | 124.7 | 2,032 | 2,032 | cyclic fail. | |
T-67-3a | 14 (S) | 39.8 | 3.3 | 25,600 | 227.7 | - | 0.001 | 0.001 | initial crack |
34 (E) | 42.7 | 3.7 | 26,500 | 429.7 | 49.6 | 1,191 | 1,191 | cyclic fail. | |
T-67-4a | 19 (S) | 32.4 | 2.8 | 22,100 | 267.2 | - | 0.001 | 0.001 | initial crack |
29 (E) | 35.2 | - | 23,200 | 482.2 | 102.1 | 0,747 | 0,747 | cyclic fail. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hillebrand, M.; Hegger, J. Fatigue Testing of Shear Reinforcement in Prestressed Concrete T-Beams of Bridges. Appl. Sci. 2020, 10, 5560. https://doi.org/10.3390/app10165560
Hillebrand M, Hegger J. Fatigue Testing of Shear Reinforcement in Prestressed Concrete T-Beams of Bridges. Applied Sciences. 2020; 10(16):5560. https://doi.org/10.3390/app10165560
Chicago/Turabian StyleHillebrand, Matthias, and Josef Hegger. 2020. "Fatigue Testing of Shear Reinforcement in Prestressed Concrete T-Beams of Bridges" Applied Sciences 10, no. 16: 5560. https://doi.org/10.3390/app10165560
APA StyleHillebrand, M., & Hegger, J. (2020). Fatigue Testing of Shear Reinforcement in Prestressed Concrete T-Beams of Bridges. Applied Sciences, 10(16), 5560. https://doi.org/10.3390/app10165560