Optical Properties of CaF2 Thin Film Deposited on Borosilicate Glass and Its Electrical Performance in PV Module Applications
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Structure Characterization
3.2. Optical Characterization
3.2.1. Reflectance, Transmittance and Absorbance
3.2.2. Incidence Angle and Refractive Index
3.3. Electrical Characterization
3.3.1. Conventional Module
Statistical Analysis
3.3.2. Light Weight Module
Statistical Analysis
3.4. Weather-Resitance Test
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Martins, A.C.; Chapuis, V.; Virtuani, A.; Ballif, C. Ultra-Lightweight PV module design for Building Integrated Photovoltaics. In Proceedings of the 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), Washington, DC, USA, 25–30 June 2017. [Google Scholar]
- Kajisa, T.; Miyauchi, H.; Mizuhara, K.; Hayashi, K.; Tokimitsu, T.; Inoue, M.; Hara, K.; Masuda, A. Novel lighter weight crystalline silicon photovoltaic module using acrylic-film as a cover sheet. Jpn. J. Appl. Phys. 2014, 53, 092302. [Google Scholar] [CrossRef]
- Martins, A.C.; Chapuis, V.; Sculati-Meillaud, F.; Virtuani, A.; Ballif, C. Light and durable: C omposite structures for building-integrated photovoltaic modules. Prog. Photovolt. Res. Appl. 2018, 26, 718–729. [Google Scholar] [CrossRef]
- Ilse, K.; Pfau, C.; Miclea, P.T.; Krause, S.; Hagendorf, C. Quantification of abrasion-induced ARC transmission losses from reflection spectroscopy. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 2883–2888. [Google Scholar]
- Murata, T.; Ishizawa, H.; Motoyama, I.; Tanaka, A. Investigations of MgF2 optical thin films prepared from autoclaved sol. J. Sol-Gel Sci. Technol. 2004, 32, 161–165. [Google Scholar] [CrossRef]
- Raut, H.K.; Ganesh, V.A.; Nair, A.S.; Ramakrishna, S. Anti-reflective coatings: A critical, in-depth review. Energy Environ. Sci. 2011, 4, 3779–3804. [Google Scholar] [CrossRef]
- Nubile, P. Analytical design of antireflection coatings for silicon photovoltaic devices. Thin Solid Film. 1999, 342, 257–261. [Google Scholar] [CrossRef]
- Ramamoorthy, K.; Kumar, K.; Chandramohan, R.; Sankaranarayanan, K.; Saravanan, R.; Kityk, I.V.; Ramasamy, P. High optical quality IZO (In2Zn2O5) thin films by PLD–A novel development for III–V opto-electronic devices. Opt. Commun. 2006, 262, 91–96. [Google Scholar] [CrossRef]
- Fujihara, S.; Kadota, Y.; Kimura, T. Role of organic additives in the sol-gel synthesis of porous CaF2 anti-reflective coatings. J. Sol-Gel Sci. Technol. 2002, 24, 147–154. [Google Scholar] [CrossRef]
- Sharma, P.K.; Mellott, N.P.; Taylor, T.J. Solar Cell with Antireflective Coating Comprising Metal Fluoride and/or Silica and Method of Making Same. U.S. Patent Application No. 11/516,671, 27 March 2008. [Google Scholar]
- Kaminski, P.M.; Lisco, F.; Walls, J.M. Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells. IEEE J. Photovolt. 2013, 4, 452–456. [Google Scholar] [CrossRef]
- Retherford, R.S.; Sabia, R.; Sokira, V.P. Effect of surface quality on transmission performance for (111) CaF2. Appl. Surf. Sci. 2001, 183, 264–269. [Google Scholar] [CrossRef]
- Rehmer, A.; Scheurell, K.; Kemnitz, E. Formation of nanoscopic CaF2 via a fluorolytic sol–gel process for antireflective coatings. J. Mater. Chem. C 2015, 3, 1716–1723. [Google Scholar] [CrossRef] [Green Version]
- Barta, Č.; Fendrych, F.; Recker, K.; Tříska, A.; Wallrafen, F. Influence of crystallisation conditions on the microtexture of the directionally solidified eutectic of the MgF2-CaF2 system. Cryst. Res. Technol. 1990, 25, 1287–1298. [Google Scholar] [CrossRef]
- Yan, J.; Syoji, K.; Tamaki, J.I. Crystallographic effects in micro/nanomachining of single-crystal calcium fluoride. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2004, 22, 46–51. [Google Scholar] [CrossRef]
- Lee, C.H.; Qi, J.; Lee, S.T.; Hung, L.S. Epitaxial diamond on a Si/CaF2/Ir substrate. Diam. Relat. Mater. 2003, 12, 1335–1339. [Google Scholar] [CrossRef]
- Klust, A.; Bierkandt, M.; Wollschläger, J.; Müller, B.H.; Schmidt, T.; Falta, J. Low-temperature interface structure of CaF2/Si (111) studied by combining x-ray standing waves with component-resolved photoemission. Phys. Rev. B 2002, 65, 193404. [Google Scholar] [CrossRef]
- Wollschläger, J.; Hildebrandt, T.; Kayser, R.; Viernow, J.; Klust, A.; Bätjer, J.; Hille, A.; Schmidt, T.; Falta, J. Effects of electron irradiation on the structure and morphology of CaF2/Si (111). Appl. Surf. Sci. 2000, 162, 309–318. [Google Scholar] [CrossRef]
- Klust, A.; Kayser, R.; Wollschläger, J. Growth kinetics of CaF2/Si (111) for a two-step deposition. Phys. Rev. B 2000, 62, 2158. [Google Scholar] [CrossRef]
- Cook, J.G.; Yousefi, G.H.; Das, S.R.; Mitchell, D.F. RF magnetron deposition of calcium fluoride. Thin Solid Film. 1992, 217, 87–90. [Google Scholar] [CrossRef]
- Sata, N.; Eberman, K.; Eberl, K.; Maier, J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 2000, 408, 946–949. [Google Scholar] [CrossRef]
- Maki, T.; Okamoto, K.; Sugiura, M.; Hosomi, T.; Kobayashi, T. The great improvement of surface smoothness of CaF2 in pulsed laser deposition even under the two-photon absorption process. Appl. Surf. Sci. 2002, 197, 448–451. [Google Scholar] [CrossRef]
- Shushtarian, S.S.; Ogale, S.B.; Chaudhari, G.N.; Singh, P.; Rao, V.J. Epitaxial growth of CaF2 thin films on (100) GaAs by pulsed-laser deposition and in-situ annealing. Mater. Lett. 1991, 12, 335–338. [Google Scholar] [CrossRef]
- Çetin, N.E.; Korkmaz, Ş.; Elmas, S.; Ekem, N.; Pat, S.; Balbağ, M.Z.; Tarhan, E.; Temel, S.; Özmumcu, M. The structural, optical and morphological properties of CaF2 thin films by using Thermionic Vacuum Arc (TVA). Mater. Lett. 2013, 91, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Manjunatha, K.N.; Paul, S. Investigation of optical properties of nickel oxide thin films deposited on different substrates. Appl. Surf. Sci. 2015, 352, 10–15. [Google Scholar] [CrossRef]
- Bannon, J.; Coogan, C.K. Thin evaporated calcium fluoride films. Nature 1949, 163, 62–63. [Google Scholar] [CrossRef]
- Tsai, R.Y.; Shiau, S.C.; Lin, D.; Ho, F.C.; Hua, M.Y. Ion-assisted codeposition of CaF2-rich CaF2–TiO2 composites as infrared-transmitting films. Appl. Opt. 1999, 38, 5452–5457. [Google Scholar] [CrossRef] [PubMed]
- Muley, S.V.; Ravindra, N.M. Emissivity of electronic materials, coatings, and structures. Jom 2014, 66, 616–636. [Google Scholar] [CrossRef]
- Hahn, D. Calcium fluoride and barium fluoride crystals in optics: Multispectral optical materials for a wide spectrum of applications. Opt. Photonik 2014, 9, 45–48. [Google Scholar] [CrossRef]
- Sun, C.C.; Chien, W.T.; Moreno, I.; Hsieh, C.T.; Lin, M.C.; Hsiao, S.L.; Lee, X.H. Calculating model of light transmission efficiency of diffusers attached to a lighting cavity. Opt. Express 2010, 15, 6137–6148. [Google Scholar] [CrossRef]
- Washizu, E.; Yamamoto, A.; Abe, Y.; Kawamura, M.; Sasaki, K. Optical and electrochromic properties of RF reactively sputtered WO3 films. Solid State Ion. 2003, 165, 175–180. [Google Scholar] [CrossRef]
- Ballif, C.; Dicker, J.; Borchert, D.; Hofmann, T. Solar glass with industrial porous SiO2 antireflection coating: Measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain. Sol. Energy Mater. Sol. Cells 2004, 82, 331–344. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, Y.; Chen, W.L.; Hong, R.J. Preparation, durability and thermostability of hydrophobic antireflective coatings for solar glass covers. Sol. Energy 2015, 118, 222–231. [Google Scholar] [CrossRef]
Measurement Conditions | Voc (V) | Jsc (mA/cm2) | FF | η (%) | Δη (%) |
---|---|---|---|---|---|
SC | 0.7072 ± 0.0008 | 40.58 ± 0.28 | 0.7406 ± 0.0017 | 21.25 ± 0.16 | 0.00 |
CG/SC | 0.7057 ± 0.0007 | 39.03 ± 0.45 | 0.7402 ± 0.0020 | 20.39 ± 0.24 | −4.05 |
Un CG/SC | 0.7045 ± 0.0011 | 38.10 ± 0.43 | 0.7406 ± 0.0030 | 19.88 ± 0.24 | −6.45 |
Measurement Conditions | Voc (V) | Jsc (mA/cm2) | FF | η (%) | Δη (%) |
---|---|---|---|---|---|
PMMA/SC | 0.7089 ± 0.0010 | 37.80 ± 0.45 | 0.7603 ± 0.0015 | 20.37 ± 0.25 | 0.00 |
PMMA/CG/SC | 0.7082 ± 0.0010 | 36.43 ± 0.43 | 0.7612 ± 0.0012 | 19.64 ± 0.24 | −3.58 |
PMMA/Un CG/SC | 0.7074 ± 0.0008 | 35.65 ± 0.36 | 0.7601 ± 0.0018 | 19.17 ± 0.20 | −5.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zahid, M.A.; Hussain, S.Q.; Cho, Y.H.; Yi, J. Optical Properties of CaF2 Thin Film Deposited on Borosilicate Glass and Its Electrical Performance in PV Module Applications. Appl. Sci. 2020, 10, 5647. https://doi.org/10.3390/app10165647
Zahid MA, Hussain SQ, Cho YH, Yi J. Optical Properties of CaF2 Thin Film Deposited on Borosilicate Glass and Its Electrical Performance in PV Module Applications. Applied Sciences. 2020; 10(16):5647. https://doi.org/10.3390/app10165647
Chicago/Turabian StyleZahid, Muhammad Aleem, Shahzada Qamar Hussain, Young Hyun Cho, and Junsin Yi. 2020. "Optical Properties of CaF2 Thin Film Deposited on Borosilicate Glass and Its Electrical Performance in PV Module Applications" Applied Sciences 10, no. 16: 5647. https://doi.org/10.3390/app10165647
APA StyleZahid, M. A., Hussain, S. Q., Cho, Y. H., & Yi, J. (2020). Optical Properties of CaF2 Thin Film Deposited on Borosilicate Glass and Its Electrical Performance in PV Module Applications. Applied Sciences, 10(16), 5647. https://doi.org/10.3390/app10165647