Analysis and Optimization of Truck Windshield Defroster
Abstract
:1. Introduction
2. Mathematical Model
2.1. Geometric Model and Computational Grid
2.2. Numerical Model
2.2.1. Turbulence Model
2.2.2. Defrosting Model
2.3. Boundary Condition
3. Model Validation
4. Results and Discussion
4.1. Performance Evaluation of the Existing Defrosting Duct System
4.2. Optimization of the Defrosting Air Duct
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | two-dimensional |
3D | three-dimensional |
CC | center center |
CFD | computational fluid dynamics |
CL | center left |
CMH | cube meters per hour |
CR | center right |
HVAC | heating, ventilating and air conditioning |
LH | left hand |
RH | right hand |
Symbols | |
Am | area constant [-] |
C1 | constant [-] |
C2 | constant [-] |
Cμ | material constant [-] |
Cp | constant pressure specific heat [J/(kg·K)] |
H | enthalpy [J/kg] |
ΔH | latent heat [J/kg] |
href | reference enthalpy [J/kg] |
k | kinetic energy [J] |
k1 | thermal conductivity [W/(m·K)] |
Tref | reference temperature [°C] |
TL | liquid temperature [°C] |
TS | solid temperature [°C] |
Ui | average velocity in the i direction [m/s] |
Uj | average velocity in the j direction [m/s] |
v | fluid velocity [m/s] |
Greek symbols | |
β | liquid phase fraction [-] |
δ | constant [-] |
ε | dissipation energy [J] |
ρ | density [kg/m3] |
ϕ | solved turbulence [J] |
σε | turbulent Prandtl number of dissipative energy [-] |
σk | turbulent Prandtl number of kinetic energy [-] |
νt | turbulent viscosity [m2/s] |
References
- Xiaolan, Z. Performance Analysis of Automotive Windshield Defrosting. Master’s Thesis, Shanghai Jiaotong University, Shanghai, China, 2007. [Google Scholar]
- Guoping, Y.; Huanhuan, Z.; Falong, Z. Improved design of car central air conditioning duct system based on cfd. J. Shanghai Univ. Eng. Technol. 2011, 25, 108–111. [Google Scholar]
- Zhaogang, Q.; Jiangping, C.; Wei, H. CFD Analysis and optimization of automotive air-conditioning duct system. Automob. Eng. 2005, 27, 103–106. [Google Scholar]
- AbdulNour, B.S. CFD prediction of automotive windshield defrost pattern. SAE Pap. 1999, 1, 1203. [Google Scholar]
- Aroussi, A.; Ghani, S.A.; Hassan, A.A.; AbdulNour, B. Assessing the performance of electrically heat windshield. SAE Pap. 2002. [Google Scholar] [CrossRef]
- Yue, Y.; Yuqi, H.; Jisheng, Z. Optimization of the automotive air conditioning strategy based on the study of dewing phenomenon and defogging progress. Appl. Therm. Eng. 2020, 169. [Google Scholar] [CrossRef]
- Sugano, M.; Yamada, T.; Takesue, Y.; Yasuki, T. Numerical analysis of defroster cleaning pattern: Prediction of the airflow near the windshield glass using three-dimensional analysis. JSAE Rev. 1994, 15, 269. (In Japanese) [Google Scholar]
- AbdulNour, B.S.; Foss, J.F. Computational and experimental predictions of automotive windshield flow. In Proceedings of the ASME Fluids Engineering Division Summer Meeting, Vancouver, BC, Canada, 22–26 June 1997. No. FEDSM97-3022. [Google Scholar]
- Ono, T.; Nagano, H.; Shiratori, S.; Shimano, K.; Kato, S. Analysis of defogging performance, thermal comfort, and energy saving for HVAC system optimization in passenger vehicles. E3S Web Conf. 2019, 111, 01033. [Google Scholar] [CrossRef] [Green Version]
- Kitada, M.; Asano, H.; Maruta, Y.; Kataoka, T.; Hirayama, S. Numerical analysis of transient defogging pattern on an automobile. SAE Pap. 2002, 1, 0223. [Google Scholar]
- Liu, J.; Aizawa, H.; Yoshino, H. CFD prediction of surface condensation on walls and its experimental validation. Build. Environ. 2004, 39, 905–911. [Google Scholar] [CrossRef]
- Kai, L.; Enlu, W.; Li, D. Numerical and experimental investigation on water vapor condensation in turbulent flue gas. Appl. Therm. Eng. 2019, 160, 114009. [Google Scholar] [CrossRef]
- Karim, J.; AbdulNour, B.S.; Wiklund, G.C. State of knowledge and current challenges in defrosting automotive windshields. SAE Pap. 2000, 23, 360–375. [Google Scholar]
- Long, X. Numerical Simulation of HVAC and the Blowing Face Duct in Vehicle Air Conditioning System. Master’s Thesis, College of Mechanical Engineering and Automation, Northeast University, Shenyang, China, 2013. [Google Scholar]
- Yang, B.; Huang, L.N.; Ren, F. Aerodynamic Design and numerical simulation analysis of a passenger car’s defrosting duct. In Proceedings of the FISITA 2012 World Automotive Congress, Beijing, China, 23 November 2012; pp. 1441–1448. [Google Scholar] [CrossRef]
- Serrano, J.; Piqueras, P.; Navarro, R.; Tarí, D.; Meano, C. Development and verification of an in-flow water condensation model for 3D-CFD simulations of humid air streams mixing. Fluids 2018, 167, 158–165. [Google Scholar] [CrossRef]
- Da, L. Application of CFD simulation technology in design of automobile blowing wind duct. Sci. Technol. Style 2011, 17, 110. [Google Scholar]
- Yanghua, C.; Ying, F. CFD numerical analysis of automotive air-conditioning duct system. J. Nanchang Univ. 2012, 36, 282–285. [Google Scholar]
- Li, F.S. Flow field analysis of hvac face-blowing duct based on CFD. Appl. Mech. Mater. 2014. [Google Scholar] [CrossRef]
Boundary Conditions | Setting |
---|---|
Working fluid | Air ideal gas |
Inlet | Velocity-inlet |
Outlet | Pressure-outlet (101.325 kPa) |
Windshield surface | Stationary wall (No-slip wall) |
Outlet Number | Air Distribution (100%) | Outlet Volume Flow Rate (CMH) | Outlet Air Speed (m/s) | Pressure Loss—Static Pressure (Pa) |
---|---|---|---|---|
LH | 12.2 | 30.5 | 6.8 | 204.73 |
CL | 13.6 | 34 | 1.7 | 217.67 |
CC | 47.9 | 119.75 | 3.5 | 217.68 |
CR | 14.1 | 35.25 | 1.7 | 217.70 |
RH | 12.2 | 30.5 | 7.8 | 201.56 |
Outlet Number | Air Flow Distribution (%) | |
---|---|---|
Original Model | Optimized Model | |
LH | 12.2 | 13.6 |
CL | 13.6 | 20 |
CC | 47.9 | 37.1 |
CR | 14.1 | 17.1 |
RH | 12.2 | 12.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Qu, X.; Ji, L.; Wu, W.; Wang, X. Analysis and Optimization of Truck Windshield Defroster. Appl. Sci. 2020, 10, 5671. https://doi.org/10.3390/app10165671
He Z, Qu X, Ji L, Wu W, Wang X. Analysis and Optimization of Truck Windshield Defroster. Applied Sciences. 2020; 10(16):5671. https://doi.org/10.3390/app10165671
Chicago/Turabian StyleHe, Zhilong, Xide Qu, Lantian Ji, Weifeng Wu, and Xiaolin Wang. 2020. "Analysis and Optimization of Truck Windshield Defroster" Applied Sciences 10, no. 16: 5671. https://doi.org/10.3390/app10165671
APA StyleHe, Z., Qu, X., Ji, L., Wu, W., & Wang, X. (2020). Analysis and Optimization of Truck Windshield Defroster. Applied Sciences, 10(16), 5671. https://doi.org/10.3390/app10165671