Prediction of As, Cd, Cr, Hg, Ni, and Se Concentrations in Organic Amendments Using Portable X-ray Fluorescence and Multivariate Modeling
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Portable X-ray Fluorescence (pXRF) Analysis
2.2. Samples
2.3. Statistical Data Analysis
3. Results
3.1. Discriminant Analysis
3.2. Linear Relationships in Compost Samples
3.3. Linear Relationships in Sewage Sludge Samples
3.4. Linear Relationships in Organic Fertiliser Samples
3.5. Combined Relationships for All Sample Types
4. Discussion
4.1. The Meaning of the Equations
4.2. Confirmatory Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vanhoof, C.; Bacon, J.R.; Fittschen, U.E.A.; Vincze, L. 2020 atomic spectrometry update–A review of advances in X-ray fluorescence spectrometry and its special applications. J. Anal. At. Spectrom. 2020. [Google Scholar] [CrossRef]
- O’Rourke, S.M.; Stockmann, U.; Holden, N.M.; McBratney, A.B.; Minasny, B. An assessment of model averaging to improve predictive power of portable vis-NIR and XRF for the determination of agronomic soil properties. Geoderma 2016, 279, 31–44. [Google Scholar] [CrossRef]
- West, M.; Ellis, A.T.; Streli, C.; Vanhoof, C.; Wobrauschek, P. 2017 atomic spectrometry update–A review of advances in X-ray fluorescence spectrometry and its special applications. J. Anal. At. Spectrom. 2017, 32, 1629–1649. [Google Scholar] [CrossRef]
- Rouillon, M.; Taylor, M.P. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? Environ. Pollut. 2016, 214, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Lemière, B. A review of pXRF (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Weindorf, D.C.; Bakr, N.; Zhu, Y. Chapter One—Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 128, pp. 1–45. ISBN 0065-2113. [Google Scholar]
- Adler, K.; Piikki, K.; Söderström, M.; Eriksson, J.; Alshihabi, O. Predictions of Cu, Zn, and Cd Concentrations in Soil Using Portable X-ray Fluorescence Measurements. Sensors 2020, 20, 474. [Google Scholar] [CrossRef] [Green Version]
- Havukainen, J.; Hiltunen, J.; Puro, L.; Horttanainen, M. Applicability of a field portable X-ray fluorescence for analyzing elemental concentration of waste samples. Waste Manag. 2019, 83, 6–13. [Google Scholar] [CrossRef]
- Healy, M.G.; Fenton, O.; Forrestal, P.J.; Danaher, M.; Brennan, R.B.; Morrison, L. Metal concentrations in lime stabilised, thermally dried and anaerobically digested sewage sludges. Waste Manag. 2016, 48, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Manohara, B.; Belagali, S.L. Evaluation of energy dispersive scanning electron microscopy and X-ray fluorescence techniques for analysis of compost quality. Anal. Methods 2017, 9, 253–258. [Google Scholar] [CrossRef]
- McWhirt, A.; Weindorf, D.C.; Zhu, Y. Rapid analysis of elemental concentrations in compost via portable x-ray fluorescence spectrometry. Compost. Sci. Util. 2012, 20, 185–193. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Zhang, J.; Zhao, J.; Liu, Y.; Sun, L.; Liu, B.; Mao, H.; Lin, Y.; Li, W.; et al. Evaluation of the potential of pelletized biomass from different municipal solid wastes for use as solid fuel. Waste Manag. 2018, 74, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Weindorf, D.C.; Sarkar, R.; Dia, M.; Haggard, B.; McWhirt, A.; Wooten, A.; Wang, H.; Chang, Q. Correlation of X-ray Fluorescence Spectrometry And Inductively Coupled Plasma Atomic Emission Spectroscopy for Elemental Determination in Composted Products. Compost. Sci. Util. 2008, 16, 79–82. [Google Scholar] [CrossRef]
- Götze, R.; Boldrin, A.; Scheutz, C.; Astrup, T.F. Physico-Chemical characterisation of material fractions in household waste: Overview of data in literature. Waste Manag. 2016, 49, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CEN (European Committee for Standardization). Characterization of Waste. Screening Methods for the Element Composition by Portable X-ray Fluorescence Instruments; EN16424:2014; CEN (European Committee for Standardization): Brussels, Belgium, 2014; p. 36. [Google Scholar]
- Vanhoof, C.; Holschbach-Bussian, K.A.; Bussian, B.M.; Cleven, R.; Furtmann, K. Applicability of portable XRF systems for screening waste loads on hazardous substances as incoming inspection at waste handling plants. X-ray Spectrom. 2013, 42, 224–231. [Google Scholar] [CrossRef]
- CEN (European Committee for Standardization). Characterization of waste and soil. Determination of Elemental Composition by X-ray Fluorescence; EN 15309:2007; CEN (European Committee for Standardization): Brussels, Belgium, 2007. [Google Scholar]
- Weindorf, D.C.; Chakraborty, S.; Li, B.; Deb, S.; Singh, A.; Kusi, N.Y. Compost salinity assessment via portable X-ray fluorescence (PXRF) spectrometry. Waste Manag. 2018, 78, 158–163. [Google Scholar] [CrossRef]
- López-Núñez, R.; Ajmal-Poley, F.; González-Pérez, J.A.; Bello-López, M.A.; Burgos-Doménech, P. Quick Analysis of Organic Amendments via Portable X-ray Fluorescence Spectrometry. Int. J. Environ. Res. Public Health 2019, 16, 4317. [Google Scholar] [CrossRef] [Green Version]
- CEN (European Committee for Standardization). Sludge, Treated Biowaste and Soil—Digestion of Aqua Regia Soluble Fractions of Elements 2012; EN 16174; CEN (European Committee for Standardization): Brussels, Belgium, 2012. [Google Scholar]
- CEN (European Committee for Standardization). Characterization of Waste—Digestion for Subsequent Determination of Aqua Regia Soluble Portion of Elements 2002; EN 13657; CEN (European Committee for Standardization): Brussels, Belgium, 2002. [Google Scholar]
- Sager, M. Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biol. Biochem. 2007, 39, 1383–1390. [Google Scholar] [CrossRef]
- Tella, M.; Doelsch, E.; Letourmy, P.; Chataing, S.; Cuoq, F.; Bravin, M.N.; Saint Macary, H. Investigation of potentially toxic heavy metals in different organic wastes used to fertilize market garden crops. Waste Manag. 2013, 33, 184–192. [Google Scholar] [CrossRef]
- Villar, P.; Villar, M.; Callejón, M.; Pérez, J.L.; Jiménez, J.C.; Alonso, E.; Guiraúm, A. Evolution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in sludge samples from conventional activated sludge wastewater treatment plants. Environmetrics 2009, 20, 561–574. [Google Scholar] [CrossRef]
- Analizer XRF NitonTM XL3t GOLDD+. Available online: https://www.thermofisher.com/order/catalog/product/XL3TGOLDDPLUS#/XL3TGOLDDPLUS (accessed on 17 April 2020).
- Houba, V.J.G.; Uittenbogaard, J.; Pellen, P. Wageningen Evaluating Programmes for Analytical Laboratories (WEPAL), organization and purpose. Commun. Soil Sci. Plant Anal. 1996, 27, 421–431. [Google Scholar] [CrossRef]
- International Association of Geoanalysts. Reference Material Data Sheet SdAR-M2 Metal-Rich Sediment; International Association of Geoanalysts: Nottingham, UK, 2015. [Google Scholar]
- EPA. Method 6200: Field Portable X-ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment; Rev 0, February 2007; EPA: Washington, DC, USA, 2007. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils ad Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Anjos, M.J.; Lopes, R.T.; Jesus, E.F.O.; Assis, J.T.; Cesareo, R.; Barroso, R.C.; Barradas, C.A.A. Elemental concentration analysis in soil contaminated with recyclable urban garbage by tube-excited energy-dispersive X-ray fluorescence. Radiat. Phys. Chem. 2002, 65, 495–500. [Google Scholar] [CrossRef]
- López, R.; Burgos, P.; Madrid, F.; Camuña, I. Source Separate Collection of Recyclables Reduces Chromium and Nickel Content in Municipal Solid Waste Compost. CLEAN—Soil Air Water 2015, 43, 427–433. [Google Scholar] [CrossRef]
- Zhang, H.; He, P.J.; Shao, L.M.; Lee, D.J. Source analysis of heavy metals and arsenic in organic fractions of municipal solid waste in a mega-city (Shanghai). Environ. Sci. Technol. 2008, 42, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Kratz, S.; Schick, J.; Schnug, E. Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Sci. Total Environ. 2016, 542, 1013–1019. [Google Scholar] [CrossRef]
- EU (European Union). Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on The Market of EU Fertilising Products 2019, L170; EU (European Union): Brussels, Belgium, 2019; p. 114. [Google Scholar]
- EU (European Union). EuropeanUnion Council Directive of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge is Used in Agriculture (86/278/EEC); EU (European Union): Brussels, Belgium, 1986. [Google Scholar]
- Lemiere, B.; Laperche, V.; Haouche, L.; Auger, P. Portable XRF and wet materials: Application to dredged contaminated sediments from waterways. Geochem. Explor. Environ. Anal. 2014, 14, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Pawlowsky-Glahn, V.; Egozcue, J.J.; Tolosana-Delgado, R. Modeling and Analysis of Compositional Data; Wiley: Chichester, UK, 2015. [Google Scholar]
Compost | Sewage Sludge | Organic Fertilizer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Elem 1 | Unit | Min 2 | Max 2 | Mean | Min 2 | Max 2 | Mean | Min 2 | Max 2 | Mean |
LOI 3 | % | 9.39 | 90.0 | 40.5 | 34.6 | 61.6 | 52.8 | 56.6 | 81.1 | 70.6 |
Fe | g kg−1 | 0.99 | 33.9 | 12.2 | 12.0 | 105 | 50.1 | 0.73 | 2.7 | 1.69 |
Ca | g kg−1 | 21.7 | 320 | 81.8 | 31.6 | 59.4 | 47.9 | 26.8 | 50.8 | 36.5 |
K | g kg−1 | 0.75 | 22.0 | 8.35 | 1.33 | 14.8 | 3.27 | 18.6 | 101 | 51.8 |
P | g kg−1 | 0.67 | 28.2 | 6.20 | 3.48 | 34.1 | 28.0 | 6.14 | 33.6 | 22.3 |
S | g kg−1 | 1.53 | 22.0 | 4.09 | 2.16 | 14.8 | 9.10 | 5.43 | 55.6 | 28.8 |
Zn | mg kg−1 | 34.9 | 1295 | 242 | 193 | 1305 | 859 | 65.0 | 186 | 127 |
Pb | mg kg−1 | 3.1 | 180 | 41.9 | 49.0 | 290 | 139 | 1.40 | 6.94 | 3.38 |
Ba | mg kg−1 | 8.7 | 668 | 130 | 106 | 524 | 408 | 10.0 | 167 | 46.9 |
As | mg kg−1 | 0.85 | 8.92 | 4.70 | 2.77 | 13.9 | 7.85 | 0.17 | 4.35 | 1.79 |
Cd | mg kg−1 | 0.18 | 2.07 | 0.50 | 0.47 | 2.66 | 1.53 | 0.05 | 0.24 | 0.13 |
Cr | mg kg−1 | 3.23 | 111 | 58.7 | 31.7 | 226.5 | 75.6 | 3.58 | 280 | 62.1 |
Hg | µg kg−1 | 29 | 1410 | 211 | 174 | 2871 | 1443 | 15 | 26 | 19 |
Ni | mg kg−1 | 1.63 | 80.5 | 26.3 | 22.0 | 134.1 | 45.9 | 1.23 | 19.3 | 7.46 |
Se | µg kg−1 | 210 | 3562 | 765 | 640 | 2134 | 1687 | 420 | 582 | 484 |
Reading | Unit | CERT 1 | Mean | Min 2 | Max 2 | RD (%) 3 | Range (%) 4 |
---|---|---|---|---|---|---|---|
Cu(s) | mg kg−1 | 236 | 222 | 213 | 226 | −6.0 | 5.9 |
K(s) | g kg−1 | 41.5 | 38.6 | 36.2 | 41.1 | −6.9 | 12.7 |
Mn(s) | mg kg−1 | 1038 | 851 | 829 | 877 | −18.0 | 5.6 |
Pb(s) | mg kg−1 | 808 | 814 | 800 | 831 | 0.7 | 3.8 |
S(s) | mg kg−1 | 970 | 1255 | 1132 | 1384 | 29.4 | 20.0 |
Ti(s) | mg kg−1 | 1798 | 1392 | 1308 | 1485 | −22.6 | 12.7 |
Zn(s) | mg kg−1 | 760 | 714 | 695 | 743 | −6.1 | 6.7 |
Zr(s) | mg kg−1 | 259 | 275 | 269 | 286 | 6.1 | 6.2 |
Al(m) | g kg−1 | 66.0 | 42.8 | 39.1 | 45.3 | −35.1 | 14.5 |
Ca(m) | g kg−1 | 6.00 | 5.74 | 5.66 | 5.85 | −4.4 | 3.3 |
Fe(m) | g kg−1 | 18.4 | 18.3 | 18.0 | 18.7 | −0.5 | 3.8 |
P(m) | mg kg−1 | 345 | 456 | 412 | 493 | 32.1 | 17.8 |
Si(m) | g kg−1 | 343 | 292 | 280 | 300 | −15.0 | 6.8 |
p-Values | ||||||
---|---|---|---|---|---|---|
Equation | p(B) | p(C) | p(D) | r | Mean 1 | N(n) 3 |
(1) | 0.000 | 0.006 | 0.967 | 4.70 | 14(1) | |
(2) | 0.000 | 0.030 | 0.029 | 0.980 | 4.99 | 13(13) |
(3) | 0.000 | 0.014 | 0.989 | 0.503 | 14(1) | |
(4) | 0.000 | 0.009 | 0.031 | 0.996 | 0.525 | 13(13) |
(5) | 0.000 | 0.000 | 0.003 | 0.975 | 58.7 | 14(14) |
(6) | 0.000 | 0.949 | 211 | 14(1) | ||
(7) | 0.000 | 0.000 | 0.030 | 0.995 | 225 | 13(13) |
(8) 2 | 0.000 | 0.029 | 0.977 | 26.3 | 14(14) | |
(9) | 0.000 | 0.007 | 0.981 | 765 | 14(14) |
p-Values | ||||||
---|---|---|---|---|---|---|
Equation | p(B) | p(C) | p(D) | r | Mean 1 | N(n) 2 |
(10) | 0.000 | 0.927 | 7.85 | 11(5) | ||
(11) | 0.001 | 0.969 | 9.31 | 6(6) | ||
(12) | 0.000 | 0.001 | 0.932 | 1.53 | 11(11) | |
(13) | 0.000 | 0.995 | 95.9 | 6(6) | ||
(14) | 0.000 | 0.007 | 0.945 | 75.6 | 11(5) | |
(15) | 0.001 | 0.025 | 0.904 | 1443 | 11(2) | |
(16) | 0.002 | 0.010 | 0.024 | 0.972 | 1558 | 9(9) |
(17) | 0.000 | 0.011 | 0.907 | 45.9 | 11(2) | |
(18) | 0.000 | 0.961 | 47.4 | 9(9) | ||
(19) | 0.000 | 0.025 | 0.906 | 1687 | 11(1) | |
(20) | 0.000 | 0.010 | 0.931 | 1648 | 10(10) |
p-Values | ||||||
---|---|---|---|---|---|---|
Equation | p(B) | p(C) | p(D) | r | Mean 1 | N(n) 2 |
(21) | 0.015 | 0.945 | 1.79 | 5(1) | ||
(22) | 0.022 | 0.978 | 2.19 | 4(4) | ||
(23) | 0.003 | 0.983 | 0.135 | 5(5) | ||
(13) 3 | 329 | (1) | ||||
(24) | 0.009 | 0.041 | 0.994 | 19 | 5(5) | |
(25) | 0.036 | 0.903 | 7.5 | 5(1) | ||
(26) | 0.012 | 0.988 | 9.0 | 4(4) | ||
(27) | 0.045 | 0.955 | 484 | 4(4) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Núñez, R.; Ajmal-Poley, F.; Burgos-Doménech, P. Prediction of As, Cd, Cr, Hg, Ni, and Se Concentrations in Organic Amendments Using Portable X-ray Fluorescence and Multivariate Modeling. Appl. Sci. 2020, 10, 5726. https://doi.org/10.3390/app10175726
López-Núñez R, Ajmal-Poley F, Burgos-Doménech P. Prediction of As, Cd, Cr, Hg, Ni, and Se Concentrations in Organic Amendments Using Portable X-ray Fluorescence and Multivariate Modeling. Applied Sciences. 2020; 10(17):5726. https://doi.org/10.3390/app10175726
Chicago/Turabian StyleLópez-Núñez, Rafael, Fátima Ajmal-Poley, and Pilar Burgos-Doménech. 2020. "Prediction of As, Cd, Cr, Hg, Ni, and Se Concentrations in Organic Amendments Using Portable X-ray Fluorescence and Multivariate Modeling" Applied Sciences 10, no. 17: 5726. https://doi.org/10.3390/app10175726
APA StyleLópez-Núñez, R., Ajmal-Poley, F., & Burgos-Doménech, P. (2020). Prediction of As, Cd, Cr, Hg, Ni, and Se Concentrations in Organic Amendments Using Portable X-ray Fluorescence and Multivariate Modeling. Applied Sciences, 10(17), 5726. https://doi.org/10.3390/app10175726