Experimental Study on the Effect of Different Parameters on Rotor Blade Icing in a Cold Chamber
Abstract
:1. Introduction
2. Experimental Environment and Equipment
2.1. Refrigeration System
2.2. Spray System
2.3. Rotor System
3. Experimental Results and Analysis
3.1. Basic Rules of Rotor Blade Icing
3.2. Effect of Icing Temperature on Ice Shape
3.3. Effect of Rotation Speed on Ice Shape
3.4. Effect of LWC on Ice Shape
3.5. Effect of Icing Time on Ice Shape
3.6. Effect of Blade Number on Ice Shape
3.7. Effect of Blade Material on Ice Shape
4. Conclusions
- (1)
- The icing phenomenon of a rotor blade mainly occurred at the leading edge. It was observed that the amount of ice increased with the increase of blade spanwise length.
- (2)
- The icing temperature had a great influence on the ice type. When the temperature was high, glaze ice accumulated, and at a low temperature, rime ice accumulated.
- (3)
- With an increase of LWC, rotation speed, and icing time, the ice thickness of the leading edge of rotor blade increased.
- (4)
- Under the condition of low rotation speed and small rotor size used in this paper, the blade number had little effect on the ice shapes.
- (5)
- At the scale of the rotor model in this paper, the effect of blade material on ice accretion can be ignored.
Author Contributions
Funding
Conflicts of Interest
References
- Korkan, K.D.; Dadone, L.; Shaw, R.J. Performance degradation of helicopter rotor in forward flight due to ice. J. Aircraft. 1985, 22, 713–718. [Google Scholar] [CrossRef]
- Coffman, H.J. Helicopter rotor icing protection methods. J. Am. Helicopter Soc. 1985, 32, 34–39. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhao, Q.J.; Chen, X. New 3-D ice accretion method of hovering rotor including effects of centrifugal force. Aerosp. Sci. Technol. 2016, 48, 122–130. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Q.J. Numerical simulations for ice accretion on rotors using new three-dimensional icing model. J. Aircr. 2017, 54, 1428–1442. [Google Scholar] [CrossRef]
- Simpson, M.P.; Render, P.M. Certification and operation of helicopters in icing environments. J. Aircr. 1998, 35, 936–941. [Google Scholar] [CrossRef]
- Simpson, M.P.; Render, P.M. Investigation into the Effectiveness of Certification and Operational Icing Procedures for Helicopters; AIAA-98-0750; AIAA: Reno, NV, USA, 1998. [Google Scholar] [CrossRef]
- Belte, D. In-flight Ice Accretion Characteristics of Rotor Blade Airfoil Sections; AIAA-1987-176; AIAA: Reno, NV, USA, 1987. [Google Scholar] [CrossRef]
- Fortin, G.; Perron, J. Spinning Rotor Blade Tests in Icing Wind Tunnel; AIAA-2009-4260; AIAA: Reno, NV, USA, 2009. [Google Scholar] [CrossRef]
- Britton, R.K.; Bond, T.H.; Flemming, R.J. An Overview of a Model Rotor Icing Test in the NASA Lewis Icing Research Tunnel; AIAA-1994-716; AIAA: Reno, NV, USA, 1994. [Google Scholar] [CrossRef] [Green Version]
- Bell, D. Icing at the McKinley Climatic Laboratory; AIAA-2004-735; AIAA: Reno, NV, USA, 2004. [Google Scholar] [CrossRef]
- Flemming, R.J.; Alldridge, P.; Doeppner, R. Artificial Icing Tests of the S-92A Helicopter in the McKinley Climatic Laboratory; AIAA-2004-737; AIAA: Reno, NV, USA, 2004. [Google Scholar] [CrossRef]
- Shaw, R.J.; Richter, G.P. The UH-1H Helicopter Icing Flight Test Program: An Overview; AIAA-885-338; AIAA: Reno, NV, USA, 1985. [Google Scholar] [CrossRef] [Green Version]
- Guffond, D. Icing and De-icing tTest on a 1/4 Scale Rotor in the ONERA S1MA Wind Tunnel; AIAA-86-0480; AIAA: Reno, NV, USA, 1986. [Google Scholar] [CrossRef]
- Tsao, J.C.; Kreeger, R. Further Evaluation of Scaling Methods for Rotorcraft Icing; NASA/TM-2012-217418; NASA: Washington, DC, USA, 2012. [Google Scholar] [CrossRef] [Green Version]
- Palacios, J.L.; Han, Y.Q.; Brouwers, E.W.; Smith, E.C. Icing environment rotor test stand liquid water content measurement procedures and ice shape correlation. J. Am. Helicopter Soc. 2012, 57, 29–40. [Google Scholar] [CrossRef]
- Han, Y.Q.; Palacios, J.L.; Schmitz, S. Scaled ice accretion experiments on a rotating wind turbine blade. J. Wind Eng. Ind. Aerodyn. 2012, 109, 55–67. [Google Scholar] [CrossRef]
- Li, Y.; Tagawa, K.; Feng, F.; Li, Q.; He, Q.B. A wind tunnel experimental study of icing on wind turbine blade airfoil. Energy Convers. Manag. 2014, 85, 591–595. [Google Scholar] [CrossRef]
- Shu, L.C.; Li, H.T.; Hu, Q.; Jiang, X.L.; Qiu, G.; Mcclure, G.; Yang, H. Study of ice accretion feature and power characteristics of wind turbines at natural icing environment. Cold Reg. Sci. Technol. 2018, 147, 45–54. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Zhao, N.; Zhu, C.L. Numerical simulation for three-dimensional rotor icing in forward flight. Adv. Mech. Eng. 2018, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Tsao, J. Evaluation and Validation of the Messinger Freezing Fraction; AIAA 2003-1218; AIAA: Reno, NV, USA, 2003. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.Z.; Zhu, C.L. Numerical simulation of three-dimensional rotor icing in hovering flight. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2016, 232, 545–555. [Google Scholar] [CrossRef]
Case | Rotation Speed (RPM) | LWC (g/m3) | Icing Temperature (℃) | MVD (μm) | Angle of Attack (°) | Icing Time (s) | Number of Blades on the Rotor | Blade Material 1 |
---|---|---|---|---|---|---|---|---|
1 | 450 | 3.69 | −10 | 35 | 0 | 180 | 4 | (s) |
2 | 450 | 3.36 | −5 | 35 | 0 | 180 | 4 | (s) |
3 | 450 | 3.69 | −15 | 35 | 0 | 180 | 4 | (s) |
4 | 450 | 1.45 | −10 | 35 | 0 | 180 | 4 | (s) |
5 | 600 | 1.38 | −10 | 35 | 0 | 180 | 4 | (s) |
6 | 750 | 1.42 | −10 | 35 | 0 | 180 | 4 | (s) |
7 | 450 | 3.40 | −10 | 35 | 0 | 360 | 4 | (s) |
8 | 450 | 3.61 | −10 | 35 | 0 | 180 | 2 | (s) |
9 | 450 | 2.15 | −10 | 35 | 0 | 180 | 4 | (s) + (c) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhu, C.; Zhao, N. Experimental Study on the Effect of Different Parameters on Rotor Blade Icing in a Cold Chamber. Appl. Sci. 2020, 10, 5884. https://doi.org/10.3390/app10175884
Wang Z, Zhu C, Zhao N. Experimental Study on the Effect of Different Parameters on Rotor Blade Icing in a Cold Chamber. Applied Sciences. 2020; 10(17):5884. https://doi.org/10.3390/app10175884
Chicago/Turabian StyleWang, Zhengzhi, Chunling Zhu, and Ning Zhao. 2020. "Experimental Study on the Effect of Different Parameters on Rotor Blade Icing in a Cold Chamber" Applied Sciences 10, no. 17: 5884. https://doi.org/10.3390/app10175884
APA StyleWang, Z., Zhu, C., & Zhao, N. (2020). Experimental Study on the Effect of Different Parameters on Rotor Blade Icing in a Cold Chamber. Applied Sciences, 10(17), 5884. https://doi.org/10.3390/app10175884