An Enhanced pix2pix Dehazing Network with Guided Filter Layer
Abstract
:1. Introduction
- We propose an enhanced pix2pix network for dehazing based on perceptual loss;
- We design a residual guided filter that effectively obtains the contour information of a hazy image and combine it with the enhanced pix2pix network;
- We provide a pipeline to map the contour information to higher-dimensional features, which aims to protect global detail feature information from local features.
2. Related Work
2.1. Single Image Dehazing
2.2. GANs
3. Proposed Method
3.1. Pix2pix Dehazing Network with Guided Filter Layer
3.1.1. Transfer and Guide Module
3.1.2. Generator
3.1.3. Discriminator
3.2. Enhanced Loss Function with Perceptual Loss
3.3. Training
Algorithm 1 GAN module training |
Input: nb ← the batch size; n ← epochs of training; λ ← the hyper-parameter; Sample hazy examples X = {X(1),…,X(nb)} Sample clear examples Y = {Y(1),…,Y(nb)} Resize(X, [256, 256]) Resize(Y, [256, 256]) for epoch = 0; epoch < epochs do Guided map GM = Residual_Guided_Filter(X) Encode X → XE Concat XE, GM → Xcombination Decode Xcombination → Ỹ, the output of generator(G) Update generator(G) by descending the gradient of Equation (2) Update discriminator(D) by descending the gradient of the sum of MSE(D(Y,X),1) and MSE(D(Ỹ,X),0) |
4. Experiments and Results
4.1. Experimental Settings
4.2. Quality Measures
4.3. Comparisions with State-Of-Art Methods
5. Analysis and Discussion
5.1. Ablation Study
5.2. Limitations
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yu, T.H.; Meng, X.; Zhu, M.; Han, M. An Improved Multi-scale Retinex Fog and Haze Image Enhancement Method. In Proceedings of the International Conference on Information System & Artificial Intelligence, Hong Kong, China, 24–26 June 2016. [Google Scholar]
- Fattal, R. Single image dehazing. ACM Trans. Graph. 2008, 27. [Google Scholar] [CrossRef]
- Narasimhan, S.; Nayar, S. Vision and the Atmosphere. Int. J. Comput. Vis. 2002, 48, 233–254. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Single Image Haze Removal Using Dark Channel Prior; IEEE Computer Society: Washington, DC, USA, 2011. [Google Scholar]
- Du, Y.; Li, X. Recursive Deep Residual Learning for Single Image Dehazing. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lack City, UT, USA, 18–22 June 2018. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; p. 3. [Google Scholar]
- Gibson, K.B.; Vo, D.T.; Nguyen, T.Q. An Investigation of Dehazing Effects on Image and Video Coding. IEEE Trans. Image Process. 2012, 21, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Han, Z.; Zhao, Y.; Wang, W.; Prochazka, A.; Chambers, J. Sparse analysis model based multiplicative noise removal with enhanced regularization. Signal Process. 2017, 137, 160–176. [Google Scholar] [CrossRef] [Green Version]
- Wierzbicki, D.; Kedzierski, M.; Grochala, A. A Method for Dehazing Images Obtained from Low Altitudes during High-Pressure Fronts. Remote Sens. 2020, 12, 25. [Google Scholar] [CrossRef] [Green Version]
- Nishino, K.; Kratz, L.; Lombardi, S. Bayesian Defogging. Int. J. Comput. Vis. 2011, 98. [Google Scholar] [CrossRef]
- Zhu, Q.; Mai, J.; Shao, L. A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior. IEEE Trans. Image Process. 2015, 24, 3522–3533. [Google Scholar]
- Meng, G.; Wang, Y.; Duan, J.; Xiang, S.; Pan, C. Efficient Image Dehazing with Boundary Constraint and Contextual Regularization. In Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Berman, D.; Treibitz, T.; Avidan, S. Non-local Image Dehazing. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ren, W.; Liu, S.; Zhang, H.; Pan, J.; Cao, X.; Yang, M.H. Single Image Dehazing via Multi-Scale Convolutional Neural Networks; Springer International Publishing: Charm, Switzerland, 2016. [Google Scholar]
- Cai, B.; Xu, X.; Jia, K.; Qing, C.; Tao, D. DehazeNet: An End-to-End System for Single Image Haze Removal. IEEE Trans. Image Process. 2016, 25, 5187–5198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Peng, X.; Wang, Z.; Xu, J.; Feng, D. AOD-Net: All-in-One Dehazing Network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Ren, W.; Ma, L.; Zhang, J.; Pan, J.; Cao, X.; Liu, W.; Yang, M.-H. Gated Fusion Network for Single Image Dehazing. arXiv 2018, arXiv:1804.00213. [Google Scholar]
- Li, R.; Pan, J.; Li, Z.; Tang, J. Single Image Dehazing via Conditional Generative Adversarial Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 8202–8211. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015. [Google Scholar]
- Engin, D.; Genç, A.; Kemal Ekenel, H. Cycle-Dehaze: Enhanced CycleGAN for Single Image Dehazing. arXiv 2018, arXiv:1805.05308. [Google Scholar]
- Du, Y.; Li, X. Perceptually Optimized Generative Adversarial Network for Single Image Dehazing. arXiv 2018, arXiv:1805.01084. [Google Scholar]
- Zhang, H.; Patel, V.M. Densely Connected Pyramid Dehazing Network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 18–23 June 2018. [Google Scholar]
- Wu, H.; Zheng, S.; Zhang, J.; Huang, K. Fast End-to-End Trainable Guided Filter. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 18–23 June 2018; pp. 1838–1847. [Google Scholar]
- Li, R.; Tan, R.T.; Cheong, L.-F. Robust Optical Flow Estimation in Rainy Scenes. arXiv 2017, arXiv:1704.05239. [Google Scholar]
- Zhang, H.; Sindagi, V.; Patel, V.M. Image De-raining Using a Conditional Generative Adversarial Network. IEEE Trans. Circuits Syst. Video Technol. 2019, 1. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Sohn, K.; Yan, X.; Lee, H.; Arbor, A. Learning Structured Output Representation using Deep Conditional Generative Models. In Proceedings of the International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor Segmentation and Support Inference from RGBD Images. In Proceedings of the 12th European conference on Computer Vision—Volume Part V, Florence, Italy, 7–13 October 2012. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. O-HAZE: A dehazing benchmark with real hazy and haze-free outdoor images. arXiv 2018, arXiv:1804.05101. [Google Scholar]
- Ancuti, C.O.; Ancuti, C.; Timofte, R.; De Vleeschouwer, C. I-HAZE: A dehazing benchmark with real hazy and haze-free indoor images. arXiv 2018, arXiv:1804.05091. [Google Scholar]
- Li, B.; Ren, W.; Fu, D.; Tao, D.; Feng, D.; Zeng, W.; Wang, Z. Benchmarking Single Image Dehazing and Beyond. arXiv 2017, arXiv:1712.04143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Method | DCP | DehazeNet | AOD-Net | cGAN | DCPDN | Ours | |
---|---|---|---|---|---|---|---|
Indoor | PSNR | 18.05 | 22.36 | 19.78 | 21.02 | 18.22 | 23.58 |
SSIM | 0.817 | 0.844 | 0.887 | 0.839 | 0.815 | 0.897 | |
Outdoor | PSNR | 18.74 | 22.57 | 21.12 | 20.35 | 19.95 | 23.06 |
SSIM | 0.823 | 0.852 | 0.897 | 0.855 | 0.842 | 0.878 |
Method | DCP | DehazeNet | AOD-Net | cGAN | DCPDN | Ours | |
---|---|---|---|---|---|---|---|
O-HAZE [28] | PSNR | 13.53 | 16.93 | 17.87 | 17.37 | 16.23 | 17.49 |
SSIM | 0.639 | 0.674 | 0.636 | 0.635 | 0.611 | 0.679 | |
I-HAZE [29] | PSNR | 14.24 | 16.70 | 18.53 | 17.48 | 17.09 | 18.57 |
SSIM | 0.761 | 0.787 | 0.840 | 0.803 | 0.837 | 0.827 |
Combination | PSNR | SSIM |
---|---|---|
cGAN | 20.35 | 0.855 |
cGAN + DM | 22.03 | 0.869 |
cGAN + DM + pipeline | 22.95 | 0.867 |
cGAN + DM + pipeline + PL(ours) | 23.06 | 0.878 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, Q.; Luo, J.; Ma, K.; Feng, H.; Feng, J. An Enhanced pix2pix Dehazing Network with Guided Filter Layer. Appl. Sci. 2020, 10, 5898. https://doi.org/10.3390/app10175898
Bu Q, Luo J, Ma K, Feng H, Feng J. An Enhanced pix2pix Dehazing Network with Guided Filter Layer. Applied Sciences. 2020; 10(17):5898. https://doi.org/10.3390/app10175898
Chicago/Turabian StyleBu, Qirong, Jie Luo, Kuan Ma, Hongwei Feng, and Jun Feng. 2020. "An Enhanced pix2pix Dehazing Network with Guided Filter Layer" Applied Sciences 10, no. 17: 5898. https://doi.org/10.3390/app10175898
APA StyleBu, Q., Luo, J., Ma, K., Feng, H., & Feng, J. (2020). An Enhanced pix2pix Dehazing Network with Guided Filter Layer. Applied Sciences, 10(17), 5898. https://doi.org/10.3390/app10175898