Blind Modulation Identification of Underwater Acoustic MPSK Using Sparse Bayesian Learning and Expectation Maximization
Abstract
:1. Introduction
- Aiming at the problem that the traditional likelihood-based modulation identification method cannot achieve the identification in underwater acoustic multipath channel, we propose a blind channel estimation method based on SBL, which can eliminate the impact of multipath on the identification effectively.
- Because of the error of SBL blind channel estimation and the unknown original constellation mapping of MPSK, we model the signal processed by SBL as Gaussian mixture model (GMM), and use EM in orr to correct the constellation and compensate the error of channel estimation.
2. System Model
3. Method of SBL-EM-QHLRT Modulation Identification
3.1. Blind Channel Estimation Based on SBL
3.2. Modulation Identification Method of EM-QHLRT
4. Numerical Results
4.1. Parameter Setting
4.2. Performance of SBL Blind Channel Estimation
4.3. Performance of SBL-EM-QHLRT
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EM | Expectation Maximization |
QHLRT | Quasi-Hybrid Likelihood Ratio Test |
SBL | Sparse Bayesian Learning |
MPSK | Multiple Phase Shift Keying |
MQAM | Multiple Quadrature Amplitude Modulation |
SIMO | Single Input Multi Output |
CIR | Channel Impulse Response |
GMM | Gaussian Mixture Model |
NMSE | Normalized Mean Square Error |
SNR | Signal to Noise Ratio |
DSSS | Direct Sequence Spread Spectrum |
OFDM | Orthogonal Frequency Division Multiplexing |
References
- Mani, S.; Duman, T.M.; Hursky, P. Adaptive coding modulation for shallow-water UWA communications. J. Acoust. Soc. Am. 2008, 123, 3749–3755. [Google Scholar] [CrossRef]
- Stojanovic, M. High-Speed Underwater Acoustic Communications. In Underwater Acoustic Digital Signal Processing and Communication Systems; Springer: Boston, MA, USA, 2002. [Google Scholar]
- Han, J.H.J.; Kim, S.K.S.; Kim, K.K.K. A Study on the Underwater Acoustic Communication with Direct Sequence Spread Spectrum. In Proceedings of the 2010 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, Hong Kong, China, 11–13 December 2010; pp. 337–340. [Google Scholar]
- Qu, F.Z.; Yang, L.Q.; Yang, T.C. High reliability direct-sequence spread spectrum for underwater acoustic communications. In Proceedings of the OCEANS 2009, Biloxi, MS, USA, 26–29 October 2009; pp. 1–6. [Google Scholar]
- Zhang, Y.; Wang, C.; Yin, J.; Sheng, X. Research on multilevel differential amplitude and phase-shift keying in convolution-coded orthogonal frequency division multiplexing underwater communication system. J. Acoust. Soc. Am. 2012, 132, 2015. [Google Scholar] [CrossRef]
- Chen, P.; Rong, Y.; Nordholm, S. Joint Channel Estimation and Impulsive Noise Mitigation in Underwater Acoustic OFDM Communication Systems. IEEE Trans. Wirel. Commun. 2017, 16, 6165–6178. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, C.; Tang, R. Channel estimation based on IOTA filter in OFDM/OQPSK and OFDM/OQAM systems. Appl. Sci. 2019, 9, 1454. [Google Scholar] [CrossRef] [Green Version]
- Yucek, T.; Arslan, H. A Novel sub-optimum maximum-likelihood modulation classification algorithm for adaptive OFDM systems. In Proceedings of the Wireless Communications and Networking Conference, Atlanta, GA, USA, 21–25 March 2004; pp. 739–744. [Google Scholar]
- Haring, L.; Chen, Y.; Czylwik, A. Automatic Modulation Classification Methods for Wireless OFDM Systems in TDD Mode. IEEE Trans. Commun. 2010, 58, 2480–2485. [Google Scholar] [CrossRef]
- Wong, M.L.D.; Ting, S.K.; Nandi, A.K. Naïve Bayes classification of adaptive broadband wireless modulation schemes with higher order cumulants. In Proceedings of the International Conference on Signal Processing and Communication Systems, Gold Coast, QLD, Australia, 15–17 December 2009. [Google Scholar]
- Pedzisz, M.; Mansour, A. Automatic modulation recognition of MPSK signals using constellation rotation and its 4th order cumulant. Digit. Signal Prog. 2005, 15, 295–304. [Google Scholar] [CrossRef]
- Kim, K.; Akbar, I.A.; Bae, K.K. Cyclostationary Approaches to Signal Detection and Classification in Cognitive Radio. In Proceedings of the IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, Dublin, Ireland, 17–20 April 2007. [Google Scholar]
- Liu, C.; Peng, H.; Wu, D.; Zhao, G. Modulation recognition algorithm of burst adaptive modulation signal. Signal Process. 2012, 28, 417–424. [Google Scholar]
- Wu, H.; Saquib, M.; Yun, Z. Novel Automatic Modulation Classification Using Cumulant Features for Communications via Multipath Channels. IEEE Trans. Wirel. Commun. 2008, 7, 3098–3105. [Google Scholar]
- Dobre, O.A.; Abdi, A.; Bar-Ness, Y. Cyclostationarity-Based Modulation Classification of Linear Digital Modulations in Flat Fading Channels. Wirel. Pers. Commun. Int. J. 2010, 54, 699–717. [Google Scholar] [CrossRef]
- Hatzichristos, G.; Fargues, M.P. A hierarchical approach to the classification of digital modulation types in multipath environments. In Proceedings of the Asilomar Conference on IEEE, Pacific Grove, CA, USA, 4–7 November 2001. [Google Scholar]
- Dobre, O.A.; Abdi, A.; Bar-Ness, Y. Survey of automatic modulation classification techniques: Classical approaches and new trends. IET Commun. 2007, 1, 699–717. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.L.; Su, W.; Zhou, M. Likelihood-Ratio Approaches to Automatic Modulation Classification. IEEE Trans. Hum.-Mach. Syst. 2011, 41, 455–469. [Google Scholar] [CrossRef]
- Hameed, F.; Dobre, O.; Popescu, D. On the likelihood-based approach to modulation classification. IEEE Trans. Wirel. Commun. 2009, 8, 5884–5892. [Google Scholar] [CrossRef]
- Wallayt, W.; Younis, M.S.; Imran, M.; Shoaib, M.; Guizani, M. Automatic Modulation Classification for Low SNR Digital Signal in Frequency-Selective Fading Environments. Wirel. Pers. Commun. 2015, 84, 1891–1906. [Google Scholar] [CrossRef]
- Zhu, D.; Mathews, V.J.; Detienne, D.H. A Likelihood-based Algorithm for Blind Identification of QAM and PSK Signals. IEEE Trans. Wirel. Commun. 2018, 17, 3417–3430. [Google Scholar] [CrossRef]
- Ozdemir, O.; Wimalajeewa, T.; Dulek, B.; Varshney, P.K.; Su, W. Asynchronous linear modulation classification with multiple sensors via generalized em algorithm. IEEE Trans. Wirel. Commun. 2015, 14, 6389–6400. [Google Scholar] [CrossRef]
- Zhang, J.; Cabric, D.; Wang, F.; Zhong, Z. Cooperative modulation classification for multipath fading channels via expectation-maximization. IEEE Trans. Wirel. Commun. 2017, 16, 6698–6711. [Google Scholar] [CrossRef]
- Soltanmohammadi, E.; Naraghi-Pour, M. Blind Modulation Classification over Fading Channels Using Expectation-Maximization. IEEE Commun. Lett. 2013, 17, 1692–1695. [Google Scholar] [CrossRef]
- Xu, G.; Liu, H.; Tong, L.; Kailath, T. A least-squares approach to blind channel identification. IEEE Trans. Signal Process. 1995, 43, 2982–2993. [Google Scholar]
- Huang, Y.A.; Benesty, J. Adaptive multi-channel least mean square and newton algorithms for blind channel identification. Signal Process. 2002, 82, 1127–1138. [Google Scholar] [CrossRef]
- Qiao, G.; Song, Q.; Ma, L. Sparse Bayesian Learning for Channel Estimation in Time-varying Underwater Acoustic OFDM Communication. IEEE Access 2018, 6, 56675–56684. [Google Scholar] [CrossRef]
- Wang, S.; He, Z.; Niu, K. A Sparse Bayesian Learning Based Joint Channel and Impulsive Noise Estimation Algorithm for Underwater Acoustic OFDM Systems. In Proceedings of the 2018 OCEANS, Kobe, Japan, 28–31 May 2018. [Google Scholar]
- Prasad, R.; Murthy, C.R.; Rao, B.D. Joint Approximately Sparse Channel Estimation and Data Detection in OFDM Systems Using Sparse Bayesian Learning. IEEE Trans. Signal Process. 2014, 62, 3591–3603. [Google Scholar] [CrossRef]
- Sengupta, S.K. Fundamentals of Statistical Signal Processing: Estimation Theory; PTR Prentice Hall: Upper Saddle River, NJ, USA, 1993. [Google Scholar]
- MacKay, D.J.C. Bayesian interpolation. Neural Comput. 1992, 4, 415–447. [Google Scholar] [CrossRef]
- Yang, J.B.; Liao, X.J.; Chen, M.H. Compressive Sensing of Signals from a GMM with Sparse Precision Matrices. Adv. Neural Inf. Process. Syst. 2014, 4, 3194–3202. [Google Scholar]
- Berger, C.R.; Zhou, S.; Preisig, J.C.; Willett, P. Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing. IEEE Trans. Wirel. Commun. 2010, 58, 1708–1721. [Google Scholar] [CrossRef] [Green Version]
- Berger, C.R. Application of Compressive Sensing to Sparse Channel Estimation. IEEE Commun. Mag. 2010, 48, 164–174. [Google Scholar] [CrossRef]
- Qiao, G.; Song, Q. A low-complexity orthogonal matching pursuit based channel estimation method for time-varying underwater acoustic OFDM systems. J. Acoust. Soc. Am. 2019, 148, 246–250. [Google Scholar] [CrossRef]
sampling frequency | 48 |
Bandwidth | 6 |
Carrier frequency | 8 |
frequency offset | 300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, T.; Xia, Z.; Liu, S.; Wu, X.; Zhang, L. Blind Modulation Identification of Underwater Acoustic MPSK Using Sparse Bayesian Learning and Expectation Maximization. Appl. Sci. 2020, 10, 5919. https://doi.org/10.3390/app10175919
Fang T, Xia Z, Liu S, Wu X, Zhang L. Blind Modulation Identification of Underwater Acoustic MPSK Using Sparse Bayesian Learning and Expectation Maximization. Applied Sciences. 2020; 10(17):5919. https://doi.org/10.3390/app10175919
Chicago/Turabian StyleFang, Tao, Zhi Xia, Songzuo Liu, Xiongbiao Wu, and Lanyue Zhang. 2020. "Blind Modulation Identification of Underwater Acoustic MPSK Using Sparse Bayesian Learning and Expectation Maximization" Applied Sciences 10, no. 17: 5919. https://doi.org/10.3390/app10175919
APA StyleFang, T., Xia, Z., Liu, S., Wu, X., & Zhang, L. (2020). Blind Modulation Identification of Underwater Acoustic MPSK Using Sparse Bayesian Learning and Expectation Maximization. Applied Sciences, 10(17), 5919. https://doi.org/10.3390/app10175919