Objective Evaluation of Therapeutic Effects of ADHD Medication Using a Smart Watch: A Pilot Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants
2.2. Accelerometer Recordings
2.3. Features Extraction
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Berger, I. Diagnosis of attention deficit hyperactivity disorder: Much ado about something. Isr. Med. Assoc. J. 2011, 13, 571–574. [Google Scholar] [PubMed]
- Aldemir, R.; Demirci, E.; Bayram, A.K.; Canpolat, M.; Ozmen, S.; Per, H.; Tokmakci, M. Evaluation of two types of drug treatment with qeeg in children with adhd. Transl. Neurosci. 2018, 9, 106–116. [Google Scholar] [CrossRef]
- Jensen, P.S. A 14-month randomized clinical trial of treatment strategies for attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 1999, 56, 1073–1086. [Google Scholar]
- Cornforth, C.; Sonuga-Barke, E.; Coghill, D. Stimulant drug effects on attention deficit/hyperactivity disorder: A review of the effects of age and sex of patients. Curr. Pharm. Des. 2010, 16, 2424–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, J.M.; Kraemer, H.C.; Hinshaw, S.P.; Arnold, L.E.; Conners, C.K.; Abikoff, H.B.; Clevenger, W.; Davies, M.; Elliott, G.R.; Greenhill, L.L.; et al. Clinical relevance of the primary findings of the mta: Success rates based on severity of adhd and odd symptoms at the end of treatment. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 168–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolraich, M.L.; Lambert, W.; Doffing, M.A.; Bickman, L.; Simmons, T.; Worley, K. Psychometric properties of the vanderbilt adhd diagnostic parent rating scale in a referred population. J. Pediatric Psychol. 2003, 28, 559–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolsey, C.; Smoldon, J.; Devney, R. Initial development of an attention-deficit/hyperactivity disorder visual analog scale for rapid assessment of medication effects. J. Am. Assoc. Nurse Pract. 2019. [Google Scholar] [CrossRef] [PubMed]
- Staab, W.; Hottowitz, R.; Sohns, C.; Sohns, J.M.; Gilbert, F.; Menke, J.; Niklas, A.; Lotz, J. Accelerometer and gyroscope based gait analysis using spectral analysis of patients with osteoarthritis of the knee. J. Phys. Ther. Sci. 2014, 26, 997–1002. [Google Scholar] [CrossRef] [Green Version]
- Zollinger, M.; Degache, F.; Currat, G.; Pochon, L.; Peyrot, N.; Newman, C.J.; Malatesta, D. External mechanical work and pendular energy transduction of overground and treadmill walking in adolescents with unilateral cerebral palsy. Front. Physiol. 2016, 7, 121. [Google Scholar] [CrossRef] [Green Version]
- Ossig, C.; Antonini, A.; Buhmann, C.; Classen, J.; Csoti, I.; Falkenburger, B.; Schwarz, M.; Winkler, J.; Storch, A. Wearable sensor-based objective assessment of motor symptoms in parkinson’s disease. J. Neural. Transm. (Vienna) 2016, 123, 57–64. [Google Scholar] [CrossRef]
- Capela, N.A.; Lemaire, E.D.; Baddour, N.; Rudolf, M.; Goljar, N.; Burger, H. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants. J. Neuroeng. Rehabil. 2016, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, M.H.; Henderson, A.; Chow, S.M.; Yao, G. Relationship between motor proficiency, attention, impulse, and activity in children with adhd. Dev. Med. Child Neurol. 2004, 46, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.C.; Asherson, P.; Rijsdijk, F.; Kuntsi, J. Is overactivity a core feature in adhd? Familial and receiver operating characteristic curve analysis of mechanically assessed activity level. J. Am. Acad. Child Adolesc. Psychiatry 2009, 48, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Martin-Martinez, D.; Casaseca-de-la-Higuera, P.; Alberola-Lopez, S.; Andres-de-Llano, J.; Lopez-Villalobos, J.A.; Ardura-Fernandez, J.; Alberola-Lopez, C. Nonlinear analysis of actigraphic signals for the assessment of the attention-deficit/hyperactivity disorder (adhd). Med. Eng. Phys. 2012, 34, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Kam, H.J.; Lee, K.; Cho, S.M.; Shin, Y.M.; Park, R.W. High-resolution actigraphic analysis of adhd: A wide range of movement variability observation in three school courses—A pilot study. Healthc. Inform. Res. 2011, 17, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Mahony, N.; Florentino-Liano, B.; Carballo, J.J.; Baca-Garcia, E.; Rodriguez, A.A. Objective diagnosis of adhd using imus. Med. Eng. Phys. 2014, 36, 922–926. [Google Scholar] [CrossRef]
- Ricci, M.; Terribili, M.; Giannini, F.; Errico, V.; Pallotti, A.; Galasso, C.; Tomasello, L.; Sias, S.; Saggio, G. Wearable-based electronics to objectively support diagnosis of motor impairments in school-aged children. J. Biomech. 2018. [Google Scholar] [CrossRef]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Md, K.K.; Williams, J.B.W. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed.; American Psychiatric Association: Washington, DC, USA, 1980. [Google Scholar]
- Association, A.P. Diagnostic and statistical manual of mental disorders. BMC Med. 2013, 17, 133–137. [Google Scholar]
- Costa, D.S.; de Paula, J.J.; Malloy-Diniz, L.F.; Romano-Silva, M.A.; Miranda, D.M. Parent snap-iv rating of attention-deficit/hyperactivity disorder: Accuracy in a clinical sample of adhd, validity, and reliability in a brazilian sample. J. Pediatr. 2018. [Google Scholar] [CrossRef]
- Hall, C.L.; Guo, B.; Valentine, A.Z.; Groom, M.J.; Daley, D.; Sayal, K.; Hollis, C. The validity of the snap-iv in children displaying adhd symptoms. Assessment 2019. [Google Scholar] [CrossRef] [PubMed]
- Gau, S.S.; Shang, C.Y.; Liu, S.K.; Lin, C.H.; Swanson, J.M.; Liu, Y.C.; Tu, C.L. Psychometric properties of the chinese version of the swanson, nolan, and pelham, version iv scale—Parent form. Int. J. Methods Psychiatr. Res. 2008, 17, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J.; Ng, Y.S.; Zhu, S.; Tan, D.M.; Anderson, B.; Schlaug, G.; Wang, Y. A validated smartphone-based assessment of gait and gait variability in parkinson’s disease. PLoS ONE 2015, 10, e0141694. [Google Scholar] [CrossRef] [Green Version]
- Galan-Mercant, A.; Cuesta-Vargas, A.I. Differences in trunk accelerometry between frail and non-frail elderly persons in functional tasks. BMC Res. Notes 2014, 7, 100. [Google Scholar] [CrossRef] [Green Version]
- Backlund, T.; Frankel, J.; Israelsson, H.; Malm, J.; Sundstrom, N. Trunk sway in idiopathic normal pressure hydrocephalus-quantitative assessment in clinical practice. Gait Posture 2017, 54, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, J.; Schlarb, A.A. Relationship between subtypes and symptoms of adhd, insomnia, and nightmares in connection with quality of life in children. Neuropsychiatr. Dis. Treat. 2017, 13, 2341–2350. [Google Scholar] [CrossRef] [Green Version]
- AlZaben, F.N.; Sehlo, M.G.; Alghamdi, W.A.; Tayeb, H.O.; Khalifa, D.A.; Mira, A.T.; Alshuaibi, A.M.; Alguthmi, M.A.; Derham, A.A.; Koenig, H.G. Prevalence of attention deficit hyperactivity disorder and comorbid psychiatric and behavioral problems among primary school students in western saudi arabia. Saudi Med. J. 2018, 39, 52–58. [Google Scholar] [CrossRef]
- Salvi, V.; Migliarese, G.; Venturi, V.; Rossi, F.; Torriero, S.; Vigano, V.; Cerveri, G.; Mencacci, C. Adhd in adults: Clinical subtypes and associated characteristics. Riv. Psichiatr. 2019, 54, 84–89. [Google Scholar]
Patient Number | Sex | Age | SNAP Score before Medication | SNAP Score after Medication | Reduction Percentage | Subtype |
---|---|---|---|---|---|---|
Patient 1 | M | 6y5m | 60 | NA | NA | Combined type |
Patient 2 | M | 7y8m | 42 | 38 | 9.5% | Combined type |
Patient 3 | M | 7y10m | 38 | NA | NA | Combined type |
Patient 4 | M | 6y5m | 39 | 35 | 10.3% | Combined type |
Patient 5 | M | 6y11m | 34 | 11 | 67.6% | Combined type |
Patient 6 | M | 7y | 51 | 9 | 82.4% | Combined type |
Patient 7 | M | 7y9m | 43 | 32 | 25.6% | Combined type |
Patient 8 | M | 10y4m | 26 | 13 | 50.0% | Inattention type |
Patient 9 | M | 5y11m | 37 | 21 | 43.2% | Combined type |
Patient 10 | F | 7y8m | 39 | 10 | 74.4% | Inattention type |
Before Treatment | After Treatment | p Value | |
---|---|---|---|
Variance X | 4.3911 ± 2.4874 | 2.1214 ± 0.9058 | 0.0232 |
Variance Y | 4.4227 ± 2.1723 | 2.3214 ± 0.6475 | 0.0119 * |
Variance Z | 4.0933 ± 1.5720 | 2.4091 ± 0.8141 | 0.0140 * |
Axis_X Var Reduction Percentage | Axis_Y Var Reduction Percentage | Axis_Z Var Reduction Percentage | |
---|---|---|---|
Teacher SNAP (I) Reduction Percentage | −0.0227 | 0.0917 | 0.3565 |
Teacher SNAP (H) Reduction Percentage | 0.2881 | 0.6053 | 0.4605 |
Teacher SNAP (O) Reduction Percentage | −0.2331 | −0.0778 | −0.0373 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, C.-S.; Yang, R.-C.; Chiang, C.-T.; Wu, R.-C.; Lin, L.-C. Objective Evaluation of Therapeutic Effects of ADHD Medication Using a Smart Watch: A Pilot Study. Appl. Sci. 2020, 10, 5946. https://doi.org/10.3390/app10175946
Ouyang C-S, Yang R-C, Chiang C-T, Wu R-C, Lin L-C. Objective Evaluation of Therapeutic Effects of ADHD Medication Using a Smart Watch: A Pilot Study. Applied Sciences. 2020; 10(17):5946. https://doi.org/10.3390/app10175946
Chicago/Turabian StyleOuyang, Chen-Sen, Rei-Cheng Yang, Ching-Tai Chiang, Rong-Ching Wu, and Lung-Chang Lin. 2020. "Objective Evaluation of Therapeutic Effects of ADHD Medication Using a Smart Watch: A Pilot Study" Applied Sciences 10, no. 17: 5946. https://doi.org/10.3390/app10175946
APA StyleOuyang, C. -S., Yang, R. -C., Chiang, C. -T., Wu, R. -C., & Lin, L. -C. (2020). Objective Evaluation of Therapeutic Effects of ADHD Medication Using a Smart Watch: A Pilot Study. Applied Sciences, 10(17), 5946. https://doi.org/10.3390/app10175946