Dust Emission Thresholds in Loess Soil Under Different Saltation Fluxes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Setup
2.2. Wind Tunnel Experiment
3. Results
3.1. Wind Profile
3.2. PM10 Concentration
3.3. Saltation Mass
3.4. Sandblasting Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kok, J.F.; Ridley, D.A.; Zhou, Q.; Miller, R.; Zhao, C.; Heald, C.L.; Ward, D.S.; Albani, S.; Haustein, K. Smaller desert dust cooling effect estimated from analysis of dust size and abundance. Nat. Geosci. 2017, 10, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Katra, I.; Gross, A.; Swet, N.; Tanner, S.; Krasnov, H.; Angert, A. Substantial dust loss of bioavailable phosphorus from agricultural soils. Sci. Rep. 2016, 6, 24736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yitshak-Sade, M.; Novack, V.; Katra, I.; Gorodischer, R.; Tal, A.; Novack, L. Non-anthropogenic dust exposure and asthma medication purchase in children. Eur. Respir. J. 2014, 45, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Krasnov, H.; Katra, I.; Novack, V.; Vodonos, A.; Friger, M.D. Increased indoor PM concentrations controlled by atmospheric dust events and urban factors. Build. Environ. 2015, 87, 169–176. [Google Scholar] [CrossRef]
- Klose, M.; Shao, Y.; Li, X.; Zhang, H.; Ishizuka, M.; Mikami, M.; Leys, J. Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res. Atmos. 2014, 119, 10441–10457. [Google Scholar] [CrossRef]
- Kok, J.F.; Mahowald, N.; Fratini, G.; Gillies, J.A.; Ishizuka, M.; Leys, J.F.; Mikami, M.; Park, M.-S.; Park, S.-U.; Van Pelt, R.S.; et al. An improved dust emission model—Part 1: Model description and comparison against measurements. Atmos. Chem. Phys. Discuss. 2014, 14, 13023–13041. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Raupach, M.R.; Findlater, P.A. Effect of saltation bombardment on the entrainment of dust by wind. J. Geophys. Res. Space Phys. 1993, 98, 12719. [Google Scholar] [CrossRef] [Green Version]
- Kok, J.F.; Parteli, E.J.; Michaels, T.i.; Karam, D.B. The physics of wind-blown sand and dust. Rep. Prog. Phys. 2012, 75, 106901. [Google Scholar] [CrossRef] [Green Version]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen and Company Limited: London, UK, 1941. [Google Scholar]
- Shao, Y.; Lü, H. A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. Space Phys. 2000, 105, 22437–22443. [Google Scholar] [CrossRef]
- Swet, N.; Katra, I. Reduction in soil aggregation in response to dust emission processes. Geomorphology 2016, 268, 177–183. [Google Scholar] [CrossRef]
- Katra, I. Soil Erosion by Wind and Dust Emission in Semi-Arid Soils Due to Agricultural Activities. Agronomy 2020, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Ben-Hur, M.; Agassi, M. Predicting interrill erodibility factor from measured infiltration rate. Water Resour. Res. 1997, 33, 2409–2415. [Google Scholar] [CrossRef]
- Roskin, J.; Katra, I.; Blumberg, D.G. Particle-size fractionation of eolian sand along the Sinai-Negev erg of Egypt and Israel. GSA Bull. 2013, 126, 47–65. [Google Scholar] [CrossRef]
- Swet, N.; Elperin, T.; Kok, J.F.; Martin, R.L.; Yizhaq, H.; Katra, I. Can active sands generate dust particles by wind-induced processes? Earth Planet. Sci. Lett. 2019, 506, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Yulevitch, G.; Danon, M.; Krasovitov, B.; Fominykh, A.; Swet, N.; Tsesarsky, M.; Katra, I. Evaluation of wind-induced dust-PM emission from unpaved roads varying in silt content by experimental results. Atmos. Pollut. Res. 2020, 11, 261–268. [Google Scholar] [CrossRef]
- Tanner, S.; Katra, I.; Haim, A.; Zaady, E. Short-term soil loss by eolian erosion in response to different rain-fed agricultural practices. Soil Tillage Res. 2016, 155, 149–156. [Google Scholar] [CrossRef]
- Katra, I. Comparison of Diverse Dust Control Products in Wind-Induced Dust Emission from Unpaved Roads. Appl. Sci. 2019, 9, 5204. [Google Scholar] [CrossRef] [Green Version]
- Sharratt, B.; Wendling, L.; Feng, G. Windblown dust affected by tillage intensity during summer fallow. Aeolian Res. 2010, 2, 129–134. [Google Scholar] [CrossRef]
- Singh, P.; Sharratt, B.; Schillinger, W.F. Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region. Soil Tillage Res. 2012, 124, 219–225. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Baddock, M.; Zobeck, T.M.; Schlegel, A.J.; Vigil, M.F.; Acosta-Martinez, V. Field wind tunnel testing of two silt loam soils on the North American Central High Plains. Aeolian Res. 2013, 10, 53–59. [Google Scholar] [CrossRef]
- Asensio, C.; Lozano, F.J.; Gallardo, P.; Giménez-Fernández, A. Soil wind erosion in ecological olive trees in the Tabernas desert (Southeastern Spain): A wind tunnel experiment. Solid Earth 2016, 7, 1233–1242. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Kok, J.F.; Martin, R.L.; Swet, N.; Katra, I.; Gill, T.E.; Reynolds, R.L.; Freire, L.S. Fine dust emissions from active sands at coastal Oceano Dunes, California. Atmos. Chem. Phys. Discuss. 2019, 19, 2947–2964. [Google Scholar] [CrossRef] [Green Version]
- Katra, I.; Lancaster, N. Surface-sediment dynamics in a dust source from spaceborne multispectral thermal infrared data. Remote Sens. Environ. 2008, 112, 3212–3221. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Prospero, J.M.; Nicholson, S.E.; Ginoux, P.; Torres, O.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the NIMBUS 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A. Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Gherboudj, I.; Beegum, S.N.; Marticorena, B.; Ghedira, H. Dust emission parameterization scheme over the MENA region: Sensitivity analysis to soil moisture and soil texture. J. Geophys. Res. Atmos. 2015, 120, 10915–10938. [Google Scholar] [CrossRef] [Green Version]
- Shalom, O.; Crouvi, O.; Enzel, Y.; Rosenfeld, D. Locally recycled late Pleistocene loess feeds modern dust storms at the desert margins of the eastern Mediterranean, Israel. Aeolian Res. 2020, 46, 100612. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Mei, F. Modeling mineral dust emissions from Chinese and Mongolian deserts. Glob. Planet. Chang. 2006, 52, 121–141. [Google Scholar] [CrossRef]
- Houser, C.A.; Nickling, W.G. The emission and vertical flux of particulate matter. Sedimentology 2001, 48, 255–267. [Google Scholar]
- Gelbart, G.; Katra, I. Dependence of the dust emission on the aggregate sizes in loess soils. Appl. Sci. 2020, 10, 5410. [Google Scholar] [CrossRef]
- Sweeney, M.; Mason, J.A. Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA. J. Geophys. Res. Earth Surf. 2013, 118, 1460–1471. [Google Scholar] [CrossRef]
- Shao, Y. Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Ishizuka, M.; Mikami, M.; Leys, J.F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
Shear Velocity (m s−1) | Sand (Dune) | Sand (90%) Dust (10%) | Sand (75%) Dust (25%) | Sand (50%) Dust (50%) |
---|---|---|---|---|
0.11 | N/A | N/A | N/A | N/A |
0.13 | N/A | N/A | N/A | N/A |
0.19 | N/A | N/A | N/A | N/A |
0.24 | N/A | N/A | N/A | N/A |
0.31 | 0 | 0.04 | 0.12 | 0.18 |
0.36 | 0 | 0.36 | 0.19 | 0.22 |
0.37 | 0 | 0.08 | 0.19 | 0.17 |
0.39 | 0 | 0.11 | 0.34 | 0.26 |
0.43 | 0.01 | 0.11 | 0.15 | 0.25 |
0.52 | 0 | 0.11 | 0.18 | 0.26 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubinstein, A.; Ben-Hur, M.; Katra, I. Dust Emission Thresholds in Loess Soil Under Different Saltation Fluxes. Appl. Sci. 2020, 10, 5949. https://doi.org/10.3390/app10175949
Rubinstein A, Ben-Hur M, Katra I. Dust Emission Thresholds in Loess Soil Under Different Saltation Fluxes. Applied Sciences. 2020; 10(17):5949. https://doi.org/10.3390/app10175949
Chicago/Turabian StyleRubinstein, Aviv, Meni Ben-Hur, and Itzhak Katra. 2020. "Dust Emission Thresholds in Loess Soil Under Different Saltation Fluxes" Applied Sciences 10, no. 17: 5949. https://doi.org/10.3390/app10175949
APA StyleRubinstein, A., Ben-Hur, M., & Katra, I. (2020). Dust Emission Thresholds in Loess Soil Under Different Saltation Fluxes. Applied Sciences, 10(17), 5949. https://doi.org/10.3390/app10175949