Human Cognitive and Motor Abilities in the Aging Workforce: An Information-Based Model
Abstract
:1. Introduction
2. Aging and Human Cognitive Abilities in the Workforce
- High dynamic and stochastic variability of humans in performing cognitive tasks;
- Large number of physical-physiological-psychological variables affecting human performance;
- Mutual influence between motor and cognitive tasks;
- Multidisciplinary competence required to analyze cognition.
3. A Review of Experimental Tests of Motor-Cognitive Abilities from Information Theory Perspective
3.1. Tests on Cognitive Abilities
3.1.1. Digit Symbol Substitution Test (DSST)
3.1.2. Reaction Time (from CANTAB)
3.1.3. Paired Associate Learning (from CANTAB)
3.1.4. The Experience of Deary and Der
3.2. Tests of Motor Abilities
4. An Information-Based Model for Age- and Sex-Dependent Performance Time of Workers
4.1. Cognitive Tasks
4.2. Motor Tasks
4.3. Information-Based Model of Human Motor-Cognitive Performance
- Ic [bit] = information content of the cognitive part of the task;
- RT(Ic, s, A) = reaction time (refer to Equation (9));
- Im [bit] = information content of the motor part of the task (); and
- = movement Time (refer to Equation (12))
5. A Case Study from the Automotive Industry
Synthesis of the Results
6. Discussion of Research Findings
Further Research
7. Summary and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bloom, D.E. 7 Billion and counting. Science 2011, 333, 562–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerland, P.; Raftery, A.E.; Ševčíková, H.; Li, N.; Gu, D.; Spoorenberg, T.; Alkema, L.; Fosdick, B.K.; Chunn, J.; Lalic, N.; et al. World population stabilization unlikely this century. Science 2014, 346, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilmarinen, J.; Promoting Active Ageing in the Workplace. European Agency for Safety and Health at Work. 2012. Available online: https://ec.europa.eu/eip/ageing/library/promoting-active-ageing-workplace_en (accessed on 1 June 2020).
- Fisher, G.; Chaffee, D.; Sonnega, A. Retirement timing: A review and recommendations for future research. Work. Aging Retire. 2016, 2, 230–261. [Google Scholar] [CrossRef]
- Cahill, K.E.; Giandrea, M.D.; Quinn, J.F. Retirement patterns and the macroeconomy, 1992–2010: The prevalence and determinants of bridge jobs, phased retirement, and reentry among three recent cohorts of older Americans. Gerontologist 2015, 55, 384–403. [Google Scholar] [CrossRef] [Green Version]
- Alley, D.; Crimmins, E. The demography of aging and work. In Aging Work 21st Century; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2012. [Google Scholar]
- Beehr, T.A.; Bennett, M.M. Working after retirement: Features of bridge employment and research directions. Work. Aging Retire. 2015, 1, 112–128. [Google Scholar] [CrossRef]
- Martin, B.; Xiang, N. The Australian Retirement Income System: Structure, Effects and Future. Work. Aging Retire. 2015, 1, 133–143. [Google Scholar] [CrossRef]
- UNFPA. Envelhecimento no Século XXI: Celebração e Desafio. In Fundo Popul. das Nações Unidas; UNFPA and HelpAge International: New York, NY, USA; London, UK, 2012. [Google Scholar]
- Dupont, C.; Benin, A.; Belgi; Milieu, U. Safer and healthier work at any age: Review of resources for workplaces. Anim. Genet. 2016, 39, 1–55. [Google Scholar]
- Peruzzini, M.; Pellicciari, M. A framework to design a human-centred adaptive manufacturing system for aging workers. Adv. Eng. Inform. 2017, 33, 330–349. [Google Scholar] [CrossRef]
- Calzavara, M.; Battini, D.; Bogataj, D.; Sgarbossa, F.; Zennaro, I. Ageing workforce management in manufacturing systems: State of the art and future research agenda. Int. J. Prod. Res. 2020, 58, 729–747. [Google Scholar] [CrossRef] [Green Version]
- Facchini, F.; Olésków-Szłapka, J.; Ranieri, L.; Urbinati, A. A maturity model for logistics 4.0: An empirical analysis and a roadmap for future research. Sustainability 2020, 12, 86. [Google Scholar] [CrossRef] [Green Version]
- Pascual, D.G.; Daponte, P.; Kumar, U.; Pascual, D.G.; Daponte, P.; Kumar, U. Handbook of Industry 4.0 and SMART Systems; CRC Press: Boca Raton, FL, USA, 2019; pp. 239–285. [Google Scholar]
- McDaniel, M.A.; Pesta, B.J.; Banks, G.C. Job Performance and the Aging Worker. In The Oxford Handbook of Work and Aging; Oxford University Press, Inc.: New York, USA, 2012. [Google Scholar]
- Salthouse, T.A. The Processing-Speed Theory of Adult Age Differences in Cognition. Psychol. Rev. 1996, 103, 403–428. [Google Scholar] [CrossRef] [Green Version]
- Rozas, A.X.P.; Juncos-Rabadán, O.; González, M.S.R. Processing speed, inhibitory control, and working memory: Three important factors to account for age-related cognitive decline. Int. J. Aging Hum. Dev. 2008, 66, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Hambrick, D.Z.; Salthouse, T.A.; Meinz, E.J. Predictors of crossword puzzle proficiency and moderators of age-cognition relations. J. Exp. Psychol. Gen. 1999, 128, 131–164. [Google Scholar] [CrossRef]
- Miller, G.A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 1956, 63, 81–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botti, L.; Calzavara, M.; Mora, C. Modelling job rotation in manufacturing systems with aged workers. Int. J. Prod. Res. 2020, 58, 69–85. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, I.S. Fitts’ Law as a Research and Design Tool in Human-Computer Interaction. Hum. Comput. Interact. 1992, 7, 91–139. [Google Scholar] [CrossRef]
- Clouston, S.A.P.; Brewster, P.; Kuh, D.; Richards, M.; Cooper, R.; Hardy, R.; Rubin, M.S.; Hofer, S.M. The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiol. Rev. 2013, 35, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Intranuovo, G.; De Maria, L.; Facchini, F.; Giustiniano, A.; Caputi, A.; Birtolo, F.; Vimercati, L. Risk assessment of upper limbs repetitive movements in a fish industry. BMC Res. Notes 2019, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kanfer, R.; Ackerman, P.L. Aging, adult development, and work motivation. Acad. Manag. Rev. 2004, 29, 440–458. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.; De Lange, A.; Weigl, M.; Van der Heijden, B.; Ackermans, J.; Wilkenloh, J. Task performance among employees above age 65: The role of cognitive functioning and job demand-control. Work. Aging Retire. 2015, 1, 296–308. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.L.; Hunter, J.E. The validity and utility of selection methods in personnel psychology: Practical and theoretical implications of 85 years of research findings. Psychol. Bull. 1998, 124, 262–274. [Google Scholar] [CrossRef]
- Salthouse, T. Consequences of Age-Related Cognitive Declines. Annu. Rev. Psychol. 2012, 63, 201–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, G.G.; Chaffee, D.S.; Tetrick, L.E.; Davalos, D.B.; Potter, G.G. Cognitive functioning, aging, and work: A review and recommendations for research and practice. J. Occup. Health Psychol. 2017, 22, 314–336. [Google Scholar] [CrossRef]
- Rasmussen, J. The human data processor as a system component. Bits and pieces of a model. Risø Natl. Lab. 1974, 1722, 600–608. [Google Scholar]
- Young, J.Q.; Van Merrienboer, J.; Durning, S.; Ten Cate, O. Cognitive Load Theory: Implications for medical education: AMEE Guide No. 86. Med. Teach. 2014, 36, 371–384. [Google Scholar] [CrossRef]
- Schulz, M.; Stamov Roßnagel, C. Informal workplace learning: An exploration of age differences in learning competence. Learn. Instr. 2010, 20, 383–399. [Google Scholar] [CrossRef]
- Kuo, H.K.; Leveille, S.G.; Yu, Y.H.; Milberg, W.P. Cognitive function, habitual gait speed, and late-life disability in the National Health and Nutrition Examination Survey (NHANES) 1999–2002. Gerontology 2007, 53, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Francikowski, J.; Łozowski, B.; Rozpędek, M.; Kaczmarzyk, M. The influence of context on the usage of working memory capacity expressed in bits. Sens. J. Mind Brain Cult. 2016. [Google Scholar] [CrossRef]
- Umanath, S.; Marsh, E.J. Understanding How Prior Knowledge Influences Memory in Older Adults. Perspect. Psychol. Sci. 2014, 9, 408–426. [Google Scholar] [CrossRef] [Green Version]
- Cattell, R.B. The measurement of adult intelligence. Psychol. Bull. 1943, 40, 153–193. [Google Scholar] [CrossRef]
- Carroll, J.B. Human cognitive abilities: A survey of factor-analytic studies: Review. Can. J. Exp. Psychol. 1993, 38, 1074. [Google Scholar]
- Cattell, R.B. Theory of fluid and crystallized intelligence: A critical experiment. J. Educ. Psychol. 1963, 54, 1–22. [Google Scholar] [CrossRef]
- Verhaeghen, P.; Salthouse, T.A. Meta-analyses of age-cognition relations in adulthood: Estimates of linear and nonlinear age effects and structural models. Psychol. Bull. 1997, 122, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working memory: The Interface between Memory and Cognition. J. Cognitive Neuroscience 1992, 4, 281–288. [Google Scholar] [CrossRef]
- Silverstein, M. Meeting the challenges of an aging workforce. Am. J. Ind. Med. 2008, 51, 269–280. [Google Scholar] [CrossRef]
- Rudolph, C.W. Lifespan developmental perspectives on working: A literature review of motivational theories. Work. Aging Retire. 2016, 2, 130–158. [Google Scholar] [CrossRef]
- Ng, T.W.H.; Feldman, D.C. The Relationship of Age to Ten Dimensions of Job Performance. J. Appl. Psychol. 2008, 93, 392–423. [Google Scholar] [CrossRef]
- Lezak, M.D.; Howieson, D. Neuropsychological Assessment, 5th ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Rabbitt, P. Introduction: Methodologies and models in the study of executive function. In Methodology of frontal and Executive Function; Psychology Press: East Sussex, UK, 1997; pp. 1–38. [Google Scholar]
- Albinet, C.T.; Boucard, G.; Bouquet, C.A.; Audiffren, M. Processing speed and executive functions in cognitive aging: How to disentangle their mutual relationship? Brain Cogn. 2012, 79, 1–11. [Google Scholar] [CrossRef]
- Park, D.C. (Ed.) The basic mechanism, accounting for age-related decline in cognitive function. In Cognitive Aging: A Primer; Taylor & Francis: New York, NY, USA, 2000; pp. 3–19. [Google Scholar]
- Salthouse, T.A.; Madden, D.J. Information Processing Speed and Aging; Taylor & Francis: Boca Raton, FL, USA, 2013. [Google Scholar]
- Jaeger, J. Digit symbol substitution test: The case for sensitivity over specificity in neuropsychological testing. J. Clin. Psychopharmacol. 2018, 38, 513–519. [Google Scholar] [CrossRef]
- Rosano, C.; Simonsick, E.M.; Harris, T.B.; Kritchevsky, S.B.; Brach, J.; Visser, M.; Yaffe, K.; Newman, A.B. Association between physical and cognitive function in healthy elderly: The health, aging and body composition study. Neuroepidemiology 2005, 24, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Rosano, C.; Perera, S.; Inzitari, M.; Newman, A.B.; Longstreth, W.T.; Studenski, S. Digit symbol substitution test and future clinical and subclinical disorders of cognition, mobility and mood in older adults. Age Ageing 2016, 45, 687–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dassanayake, T.L.; Ariyasinghe, D.I. Sex-, age-, and education-adjusted norms for Cambridge Neuropsychological Test Automated Battery in literate Sri Lankan adults. Clin. Neuropsychol. 2019, 33, 106–124. [Google Scholar] [CrossRef] [PubMed]
- Pangelinan, M.M.; Zhang, G.; VanMeter, J.W.; Clark, J.E.; Hatfield, B.D.; Haufler, A.J. Beyond age and gender: Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. Neuroimage 2011, 54, 3093–3100. [Google Scholar] [CrossRef] [Green Version]
- Deary, I.J.; Der, G. Reaction time, age, and cognitive ability: Longitudinal findings from age 16 to 63 years in representative population samples. Aging Neuropsychol. Cogn. 2005, 12, 187–215. [Google Scholar] [CrossRef]
- Hick, W.E. On the Rate of Gain of Information. Q. J. Exp. Psychol. 1952, 4, 11–26. [Google Scholar] [CrossRef]
- Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 1954, 47, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Yeudall, L.T.; Fromm, D.; Reddon, J.R.; Stefanyk, W.O. Normative data stratified by age and sex for 12 neuropsychological tests. J. Clin. Psychol. 1986, 42, 918–946. [Google Scholar] [CrossRef]
- Bolla-Wilson, K.; Kawas, C.H. Purdue Pegboard Age and Sex Norms for People 40 Years Old and Older. Dev. Neuropsychol. 1988, 4, 29–35. [Google Scholar]
- Maynard, H.B.; Stegemerten, G.J.; Schwab, J.L. Methods-Time Measurement; McGraw-Hill: New York, NY, USA, 1948. [Google Scholar]
- Salthouse, T.A. Aging and measures of processing speed. Biol. Psychol. 2000, 54, 35–54. [Google Scholar] [CrossRef]
- Madden, D.J. Speed and Timing of Behavioral Processes. In Handbook of the Psychology of Aging; Academic Press: San Diego, CA, USA, 2001; pp. 288–312. [Google Scholar]
- Mathey, F.J., IV. Psychomotor Performance and Reaction Speed in Old Age. In Patterns of Aging; S. Karger: Berlin, Germany, 2015; pp. 36–50. [Google Scholar]
- Fozard, J.L.; Vercruyssen, M.; Reynolds, S.L.; Hancock, P.A.; Quilter, R.E. Age differences and changes in reaction time: The Baltimore longitudinal study of aging. J. Gerontol. 1994, 49, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huppert, F.A.; Whittington, J.E. Changes in Cognitive Function in a Population Sample; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Park, K.S. Human Reliability, Prediction, and Prevention of Human Errors; North Holland: Amsterdam, The Netherlands, 1987; Volume 7. [Google Scholar]
- LaViers, A. Counts of mechanical, external configurations compared to computational, internal configurations in natural and artificial systems. PLoS ONE 2019, 14, e0215671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beamish, D.; Bhatti, S.; Chubbs, C.S.; MacKenzie, I.S.; Wu, J.; Jing, Z. Estimation of psychomotor delay from the Fitts’ law coefficients. Biol. Cybern. 2009, 101, 279–296. [Google Scholar] [CrossRef] [PubMed]
- Mummolo, C.; Mangialardi, L.; Kim, J.H. Concurrent contact planning and trajectory optimization in one step walking motion. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Boston, MA, USA, 2–5 August 2015; pp. 1–7, Paper No: DETC2015-47745, V008T13A018. [Google Scholar]
- Mummolo, C.; Peng, W.Z.; Gonzalez, C.; Kim, J.H. Contact-dependent balance stability of biped robots. J. Mech. Robot. 2018, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Foglia, L.; Wilson, R.A. Embodied cognition. Wiley Interdiscip. Rev. Cogn. Sci. 2013, 4, 319–325. [Google Scholar] [CrossRef]
- Costello, M.C.; Bloesch, E.K. Are older adults less embodied? A review of age effects through the lens of embodied cognition. Front. Psychol. 2017, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Ghazi-Zahedi, K.; Haeufle, D.F.B.; Montúfar, G.; Schmitt, S.; Ay, N. Evaluating morphological computation in muscle and DC-motor driven models of hopping movements. Front. Robot. AI 2016, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ghazi-Zahedi, K. Morphological Intelligence: Measuring the Body’s Contribution to Intelligence; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Mummolo, C.; Cursi, F.; Kim, J.H. Balanced and falling states for biped systems: Applications to robotic versus human walking stability. In Proceedings of the 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), Cancun, Mexico, 15–17 November 2016; pp. 1150–1160. [Google Scholar]
- Mummolo, C.; Kim, J.H. Passive and dynamic gait measures for biped mechanism: Formulation and simulation analysis. Robotica 2013, 31, 555. [Google Scholar] [CrossRef]
Age Class | 16 | 24 | 36 | |||
Age Range | 15–16 | 23–26 | 31–41 | |||
Sex | M | F | M | F | M | F |
SC-RT (ms) | 293.4 | 295 | 294.7 | 306 | 304.4 | 314.9 |
MC-RT (ms) | 577.8 | 580.1 | 546 | 556.5 | 618.9 | 621.5 |
Age Class | 44 | 56 | 63 | |||
Age Range | 39–50 | 54–58 | 62–66 | |||
Sex | M | F | M | F | M | F |
SC-RT (ms) | 316.2 | 332.8 | 348.1 | 345.6 | 373.5 | 375.1 |
MC-RT (ms) | 642.5 | 630.3 | 721.2 | 718.1 | 739.1 | 735 |
Age Class | 16 | 24 | 36 | |||
---|---|---|---|---|---|---|
Sex | M | F | M | F | M | F |
Tp,c-SC (ms/bit) | 190.7 | 191.8 | 191.6 | 198.9 | 197.9 | 204.7 |
Tp,c-MC (ms/bit) | 187.8 | 188.5 | 177.5 | 180.9 | 201.1 | 202.0 |
Average Tp,c (ms/bit) | 189.3 | 190.1 | 184.5 | 189.9 | 199.5 | 203.3 |
Age Class | 44 | 56 | 63 | |||
Sex | M | F | M | F | M | F |
Tp,c-SC (ms/bit) | 205.5 | 216.3 | 226.3 | 224.6 | 242.8 | 243.8 |
Tp,c-MC (ms/bit) | 208.8 | 204.8 | 234.4 | 233.4 | 240.2 | 238.9 |
Average Tp,c (ms/bit) | 207.2 | 210.6 | 230.3 | 229.0 | 241.5 | 241.3 |
Sex | αc (ms) | βc (ms/bit) |
---|---|---|
Male | 160.75 | 1.20 |
Female | 165.94 | 1.12 |
Age Class | 18 | 23 | 28 | 36 | ||||
Age Range | 15–20 | 21–25 | 26–30 | 31–40 | ||||
Sex | M | F | M | F | M | F | M | F |
Performance (#) | 15.56 | 16.69 | 15.54 | 16.64 | 16.22 | 17.25 | 15.35 | 15.94 |
Tp,m (ms/bit) | 274 | 253 | 275 | 254 | 261 | 244 | 278 | 265 |
Age Class | 45 | 55 | 65 | 75 | ||||
Age Range | 41–49 | 50–59 | 60–69 | 70–79 | ||||
Sex | M | F | M | F | M | F | M | F |
Performance (#) | 14.6 | 15.9 | 14.4 | 15 | 13.6 | 14.6 | 13 | 13.8 |
Tp,m (ms/bit) | 295 | 267 | 299 | 285 | 319 | 295 | 336 | 314 |
Sex | αm (ms) | βm (ms/bit) |
Male | 155.33 | 0.70 |
Female | 144.55 | 0.67 |
Operator | Sex (M/F) | Age |
---|---|---|
A | M | 25 |
B | F | 35 |
C | M | 50 |
D | M | 60 |
E | F | 60 |
Reach | Grasp | Move | Release | |
---|---|---|---|---|
Distance (cm) | 40 | - | 30 | - |
TMU Value | 11.3 | 2 | 12.9 | 2 |
MTM (s) | 0.41 | 0.07 | 0.46 | 0.07 |
Ic | Im | |||
---|---|---|---|---|
Sub-Tasks | WS1: Set the Thrust Ring into the Flange | Ic [bit] (Equation (1)) | Im,ID [bit] (Equation (8a)) | Im,MTM [bit] (Equation (8b)) |
1 | Grasp the flange | - | - | 2.66 |
2 | Place the flange under the magnifying glass | - | 1.58 | - |
3 | Verify the presence of the defect | 1.00 | - | - |
4 | Put the flange in the scrap basket in the presence of the defect * | - | - | 2.98 |
5 | Place the flange on the punching machine | - | 1.32 | - |
6 | Grasp the thrust ring on the flange | - | - | 2.66 |
7 | Place the thrust ring on the flange | - | 2.00 | - |
8 | Verify the correct position of the thrust ring | 1.00 | - | - |
9 | Push the button start on the punching machine | 2.00 | - | - |
10 | Push the button “scrap” * on the punching machine(wrong punching) | 1.00 | - | - |
11 | Grasp and put the flange in the basket (OK flange/NOK flange) | - | - | 5.64 |
Sub-Tasks | WS2: Set the Oil Seal into the Flange | Ic [bit] (Equation (1)) | Im,ID [bit] (Equation (8a)) | Im,MTM [bit] (Equation (8b)) |
1 | Grasp the flange | - | - | 2.66 |
2 | Verify the punching (OK/NOK punching) | 1.00 | - | - |
3 | Place the flange on the punching machine | - | 1.32 | - |
4 | Verify that the oil seal side of the flange is facing upwards | 1.00 | - | - |
5 | Grasp the oil seal | - | - | 2.66 |
6 | Place the oil seal on the flange | - | 2.81 | - |
7 | Verify that the spring side of the oil seal is facing downwards | 1.00 | - | - |
8 | Push the button start on the punching machine | 2.00 | - | - |
9 | Push the button “incorrect positioning” * (repeat action 7) | 2.00 | - | - |
10 | Push the button “scrap” * (wrong punching) | 1.00 | - | - |
11 | Grasp and put the flange in the basket (OK flange/NOK flange) | - | - | 5.64 |
Sub-Tasks | WS3: Set the Bushing into the Triangular Ring of the Flange | Ic [bit] (Equation (1)) | Im,ID [bit] (Equation (8a)) | Im,MTM [bit] (Equation (8b)) |
1 | Grasp the triangular ring from the basket | - | - | 2.66 |
2 | Place the triangular ring on the punching machine | - | 1.32 | - |
3 | Verify the correct position of the triangular ring | 1.00 | - | - |
4 | Grasp the bushing from the basket | - | - | 2.66 |
5 | Place the bushing on the punching machine | - | 2.81 | - |
6 | Verify the correct position of the bushing | 1.00 | - | - |
7 | Push the button “punching” | 2.00 | - | - |
8 | Verify the correct punching | 1.00 | - | - |
9 | Grasp and put the flange in the basket (OK flange/NOK flange) | - | - | 5.64 |
Operator | TWS1 (s) | TWS2 (s) | TWS3 (s) |
---|---|---|---|
A | 11.16 | 13.72 | 12.67 |
B | 11.17 | 13.76 | 12.71 |
C | 11.62 | 14.22 | 13.17 |
D | 11.81 | 14.42 | 13.37 |
E | 11.61 | 14.23 | 13.18 |
Operator-WS Assignment (WS1-WS2-WS3) | |||
---|---|---|---|
Case 1 (problem 16a) | Minimum idle time (s) | 4.88 | D-B-C |
Case 2 (problem 17a) | Minimum idle time Std. Dev. (s) | 0.31 | D-A-E |
Operator-WS Assignment (WS1-WS2-WS3) | |||
---|---|---|---|
Case 1 (problem 16a) | Minimum idle time (s) | 1.89 | D-B-C |
Case 2 (problem 17a) | Minimum idle time Std. Dev. (s) | 0.31 | D-A-C |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Digiesi, S.; Cavallo, D.; Lucchese, A.; Mummolo, C. Human Cognitive and Motor Abilities in the Aging Workforce: An Information-Based Model. Appl. Sci. 2020, 10, 5958. https://doi.org/10.3390/app10175958
Digiesi S, Cavallo D, Lucchese A, Mummolo C. Human Cognitive and Motor Abilities in the Aging Workforce: An Information-Based Model. Applied Sciences. 2020; 10(17):5958. https://doi.org/10.3390/app10175958
Chicago/Turabian StyleDigiesi, Salvatore, Daniela Cavallo, Andrea Lucchese, and Carlotta Mummolo. 2020. "Human Cognitive and Motor Abilities in the Aging Workforce: An Information-Based Model" Applied Sciences 10, no. 17: 5958. https://doi.org/10.3390/app10175958
APA StyleDigiesi, S., Cavallo, D., Lucchese, A., & Mummolo, C. (2020). Human Cognitive and Motor Abilities in the Aging Workforce: An Information-Based Model. Applied Sciences, 10(17), 5958. https://doi.org/10.3390/app10175958