Optimum Design of High-Speed Single-Phase Flux Reversal Motor with Reduced Torque Ripple
Abstract
:Featured Application
Abstract
1. Introduction
2. Selection of Optimization Criteria for a Single-Phase Flux Reversal Motor
3. Optimization Results
4. The Second Optimization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fazil, M.; Rajagopal, K. Development of external rotor single-phase PM BLDC motor based drive for ceiling fan. In Proceedings of the 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, New Delhi, India, 20–23 December 2010; Institute of Electrical and Electronics Engineers (IEEE): Piscataway Township, NJ, USA, 2010; pp. 1–4. [Google Scholar]
- Hu, H.-J.; Cao, G.-Z.; Huang, S.-D.; Wu, C.; Peng, Y.-P. Drive circuit-based torque-ripple suppression method for single-phase BLDC fan motors to reduce acoustic noise. IET Electr. Power Appl. 2019, 13, 881–888. [Google Scholar] [CrossRef]
- Lee, W.; Han, D.; Sarlioglu, B. Comparative Performance Analysis of Reference Voltage-Controlled Pulse Width Modulation for High-Speed Single-Phase Brushless DC Motor Drive. IEEE Trans. Power Electron. 2017, 33, 4560–4568. [Google Scholar] [CrossRef]
- Ostovic, V. Performance comparison of U-Core and round-stator single-phase permanent-magnet motors for pump applications. IEEE Trans. Ind. Appl. 2002, 38, 476–482. [Google Scholar] [CrossRef]
- Bentouati, S. Permanent magnet brushless dc motors for consumer products. In Proceedings of the 9th International Conference on Electrical Machines and Drives, Canterbury, UK, 1–3 September 1999; 1999; 1999, pp. 118–122. [Google Scholar] [CrossRef]
- Török, V.; Loreth, K. The world’s simplest motor for variable speed control? The Cyrano motor, a PM-biased SR-motor of high torque density. In Proceedings of the 1993 Fifth European Conf. Power Electronics and Applications, Brighton, UK, 13–16 September 1993; Available online: https://ieeexplore.ieee.org/document/264962 (accessed on 30 July 2020).
- Török, V. Electric Motor with Combined Permanent and Electromagnets. U.S. Patent RE37027E, 2001. Available online: https://patents.google.com/patent/USRE37027 (accessed on 30 July 2020).
- Jeong, K.; Ahn, J. Design and characteristics analysis of a novel single-phase hybrid SRM for blender application. J. Electr. Eng. Technolo. 2018, 13, 1996–2003. [Google Scholar] [CrossRef]
- Prakht, V.; Dmitrievskii, V.; Kazakbaev, V.; Oshurbekov, S. Comparison of High-Speed Single-Phase Flux Reversal Motor and Hybrid Switched Reluctance Motor. In Proceedings of the 2019 20th International Symposium on Power Electronics (Ee), Novi Sad, Serbia, 23–26 October 2019; Institute of Electrical and Electronics Engineers (IEEE): Piscataway Township, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Li, D.; Gao, Y.; Qu, R.; Li, J.; Huo, Y.; Ding, H. Design and Analysis of a Flux Reversal Machine With Evenly Distributed Permanent Magnets. IEEE Trans. Ind. Appl. 2018, 54, 172–183. [Google Scholar] [CrossRef]
- Zhu, X.; Hua, W. An Improved Configuration for Cogging Torque Reduction in Flux-Reversal Permanent Magnet Machines. IEEE Trans. Magn. 2017, 53, 1–4. [Google Scholar] [CrossRef]
- Vidhya, B.; Srinivas, K.N. Effect of stator permanent magnet thickness and rotor geometry modifications on the minimization of cogging torque of a flux reversal machine. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 4907–4922. [Google Scholar] [CrossRef]
- Dmitrievskii, V.; Prakht, V. Gearless generator with magnets on the stator for wind turbine. J. Physics Conf. Ser. 2018, 1102, 012018. [Google Scholar] [CrossRef] [Green Version]
- Deodhar, R.; Andersson, S.; Boldea, I.; Miller, T. The flux-reversal machine: A new brushless doubly-salient permanent-magnet machine. IEEE Trans. Ind. Appl. 1997, 33, 925–934. [Google Scholar] [CrossRef]
- Deodhar, R.P.; Andersson, S.; Boldea, I.; Miller, T. The flux-reversal machine: A new brushless doubly-salient permanent-magnet machine. In Proceedings of the IAS ’96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, San Diego, CA, USA, 6–10 October 1996; Institute of Electrical and Electronics Engineers (IEEE): Piscataway Township, NJ, USA, 2002; pp. 786–793. [Google Scholar]
- Prakht, V.; Dmitrievskii, V.A.; Kazakbaev, V.; Oshurbekov, S. Comparative analysis of two high-speed single-phase electrical machines with permanent magnets on the stator. Electr. Eng. Electromech. 2020, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Dmitrievskii, V.; Prakht, V.; Kazakbaev, V.; Sarapulov, S. Optimal Design of a High-Speed Single-Phase Flux Reversal Motor for Vacuum Cleaners. Energies 2018, 11, 3334. [Google Scholar] [CrossRef] [Green Version]
- Dmitrievskii, V.; Prakht, V.; Pozdeev, A.; Klimarev, V.; Mikhalitsyn, A. Angular grinder with new flux reversal motor. In Proceedings of the 2015 18th International Conference on Electrical Machines and Systems (ICEMS), Pattaya, Thailand, 25–28 October 2015; Institute of Electrical and Electronics Engineers (IEEE): Piscataway Township, NJ, USA, 2015; pp. 1366–1371. [Google Scholar]
- Kushwaha, D.; Dwivedi, A.; Reddy, R.; Srivastava, R.K. Study of 8/12 flux reversal machine as an alternator. In Proceedings of the 2014 21st International Conference on Telecommunications (ICT), Guwahati, India, 18–20 December 2014; Institute of Electrical and Electronics Engineers (IEEE): Piscataway Township, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Prakht, V.; Dmitrievskii, V.; Kazakbaev, V.; Sarapulov, S. Steady-state model of a single-phase flux reversal motor. In Proceedings of the 2017 IEEE 58th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON, Riga, Latvia, 12–13 October 2017; Institute of Electrical and Electronics Engineers (IEEE): Piscataway Township, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Prakht, V.; Dmitrievskii, V.; Kazakbaev, V. Novel Rotor Design for High-Speed Flux Reversal Motor. Energy Reports (ISSN: 2352-4847). In Proceedings of the 2020 7th International Conference on Power and Energy Systems Engineering (CPESE 2020), Fukuoka, Japan, 26–29 September 2020. Accepted for publication. [Google Scholar]
- Bentouati, S.; Zhu, Z.Q.; Howe, D. Influence of design parameters on the starting torque of a single-phase PM brushless DC motor. IEEE Trans. Magn. 2000, 36, 3533–3536. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.; Cho, J.; Hwang, S.-H.; Choi, J.Y.; Lee, C. Design of a Single-Phase BLDC Motor for a Cordless Vacuum Cleaner Considering the Efficiency of Airflow. Energies 2019, 12, 465. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Li, H.; Han, B. Torque Ripple Reduction in BLDC Torque Motor With Nonideal Back EMF. IEEE Trans. Power Electron. 2011, 27, 4630–4637. [Google Scholar] [CrossRef]
- Niwa, Y.; Akiyama, Y. Propositions for the analysis of commutation phenomenon and the modeling of universal motors based on introducing the state function method into FEM electromagnetic field analysis. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009 ; 2009; pp. 226–233. [Google Scholar] [CrossRef]
- Lin, D.; Zhou, P.; Stanton, S. An analytical model and parameter computation for universal motors. In Proceedings of the 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada, 15–18 May 2011; Institute of Electrical and Electronics Engineers (IEEE): Niagara Falls, ON, Canada, 2011; pp. 119–124. [Google Scholar]
- Lee, W.; Kim, J.H.; Choi, W.; Sarlioglu, B. Torque Ripple Minimization Control Technique of High-Speed Single-Phase Brushless DC Motor for Electric Turbocharger. IEEE Trans. Veh. Technol. 2018, 67, 10357–10365. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.; Li, Y.; Howe, D.; Gliemann, J. Dynamic modelling of a high-speed single-phase PM brushless DC drive. In Proceedings of the 3rd IET International Conference on Power Electronics, Machines and Drives (PEMD 2006), Dublin, Ireland, 4–6 April 2006; Institution of Engineering and Technology (IET): Dublin, Ireland, 2006; pp. 484–488. [Google Scholar]
- Cupertino, F.; Cupertino, F.; Monopoli, V.G.; Cascella, G.L. Design Procedure for High-Speed PM Motors Aided by Optimization Algorithms. Machines 2018, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-H.; Koo, D.-H.; Kim, S.; Kim, Y.-H.; Ahn, J.; Cho, C.-H.; Lee, J. Approximate optimization for maximum efficiency of high speed single phase switched reluctance motor using response surface modelling. Int. J. Appl. Electromagn. Mech. 2008, 28, 227–235. [Google Scholar] [CrossRef]
- Xia, S.; Wang, S.; Bi, D. Control Performance of High-Speed Single-Phase Brushless DC Motors. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; Institute of Electrical and Electronics Engineers (IEEE): Harbin, China, 2019; pp. 1–6. [Google Scholar]
- Chen, Y.; Chen, S.; Zhu, Z.; Howe, D.; Ye, Y. Starting Torque of Single-Phase Flux-Switching Permanent Magnet Motors. IEEE Trans. Magn. 2006, 42, 3416–3418. [Google Scholar] [CrossRef]
- Dmitrievskii, V.; Prakht, V.; Kazakbaev, V. IE5 Energy-Efficiency Class Synchronous Reluctance Motor With Fractional Slot Winding. IEEE Trans. Ind. Appl. 2019, 55, 4676–4684. [Google Scholar] [CrossRef]
- Cupertino, F.; Pellegrino, G.; Gerada, C. Design of synchronous reluctance machines with multi-objective optimization algorithms. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; 2013; 50, pp. 1858–1865. [Google Scholar] [CrossRef] [Green Version]
- Audet, C.; Tribes, C. Mesh-based Nelder-Mead algorithm for inequality constrained optimization. Comput. Optim. Appl. 2018, 71, 331–352. [Google Scholar] [CrossRef]
- Non-oriented Electrical steel, Posco, product catalogue. 2019. Available online: http://www.steel-n.com/e-sales/pdf/en/e_electrical_pdf_NO_2020.pdf (accessed on 30 July 2020).
Mode Number | Rotational Speed, rpm | Torque, N∙m | Mechanical Power, W |
---|---|---|---|
1 | 14,400 (80%) | 0.256 | 386 |
2 | 18,000 (100%) | 0.4 | 754 |
Parameter | Value |
---|---|
Supply voltage, V | 320 |
Stator stack length L, mm | 30 |
Stator outer radius, Router, mm | 25.5 |
Stator slot width α3, degrees | 61.2 |
Stator slot width α2, degrees | 30.5 |
Δ, mm | 0.007 |
Magnet thickness, mm | 1.5 |
Air gap, mm | 0.5 |
Remanence, T | 1.2 |
s, mm | 2 |
s’, mm | 3 |
Rrot bot, mm | 7 |
Rinner, mm | 3 |
Parameter | Before | After |
---|---|---|
Number of turns per phase | 80 | 91 |
Rstat,inner, mm | 14 | 13.8 |
Rstat,slot, mm | 18 | 17.4 |
Rstat,bottom, mm | 22.5 | 22.463 |
Wstator1, degrees | 8.1 | 15 |
αrot, degrees | 35.4 | 17.6 |
w/w0 | 1 | 2.4119 |
w’/w0 | 1 | 0.56176 |
Voltage shift, electrical radians | 0.06 | 0.017426 |
Parameter | Before Optimization (Figure 3a) | After Optimization (Figure 3b) | ||
---|---|---|---|---|
Speed, rpm | 14,400 | 18,000 | 14,400 | 18,000 |
Current, A (RMS) | 6.42 | 8.68 | 6.06 | 8.48 |
Efficiency, % | 84.3 | 85.0 | 84.2 | 84.2 |
Total losses, W | 70.5 | 130.1 | 70.8 | 138.1 |
Mechanical power, W | 386 | 754 | 386 | 754 |
Electric power, W | 447 | 869 | 448 | 877 |
Copper losses, W | 44.1 | 80.5 | 48 | 94.2 |
Stator core losses, W | 10.7 | 24.7 | 9.1 | 21.8 |
Rotor core losses, W | 5.8 | 8.4 | 4.1 | 6.5 |
Magnet losses, W | 0.8 | 1.4 | 0.4 | 0.8 |
Duty cycle | 0.181 | 0.374 | 0.205 | 0.425 |
Minimal torque, N∙m | −0.22 | −0.1 | 0.081 | 0.089 |
AMinDT, N∙m | 0.476 | 0.5 | 0.175 | 0.311 |
PPTR, N∙m | 1 | 1.05 | 0.381 | 0.668 |
PPTR, % of the average value | 391 | 263 | 149 | 167 |
Objective function, F | 0.61884 | 0.32119 |
Parameter | After First Optimization (Figure 3b) | After Second Optimization (Figure 11) |
---|---|---|
Number of turns per phase | 91 | 115 |
Rstat slot, mm | 17.4 | 18.8 |
Wstator 1, degrees | 15 | 12.6 |
Wstator 3, degrees | 61.2 | 72.9 |
αrot, degrees | 17.4 | 18 |
w/w0 | 2.4119 | 2.63 |
w’/w0 | 0.56176 | 0.471 |
Shift, electrical radians | 0.017426 | 0.0146 |
Parameter | After First Optimization (Figure 3b) | After Second Optimization (Figure 11) | ||
---|---|---|---|---|
Speed, rpm | 14,400 | 18,000 | 14,400 | 18,000 |
Current, A (RMS) | 6.06 | 8.48 | 4.44 | 6.61 |
Efficiency, % | 84.2 | 84.2 | 85.7 | 84.5 |
Total losses, W | 70.8 | 138.1 | 62.7 | 135 |
Mechanical power, W | 386 | 754 | 386 | 754 |
Electrical power, W | 448 | 877 | 440 | 874 |
Copper losses, W | 48 | 94.2 | 37.6 | 83.3 |
Stator core losses, W | 9.1 | 21.8 | 11 | 29.1 |
Rotor core losses, W | 4.1 | 6.5 | 4.5 | 7 |
Magnet losses, W | 0.4 | 0.8 | 0.4 | 0.8 |
Duty cycle | 0.205 | 0.425 | 0.297 | 0.672 |
Minimum torque, N∙m | 0.081 | 0.089 | 0.0623 | 0.171 |
AMinDT, N∙m | 0.175 | 0.311 | 0.193 | 0.229 |
PPTR, N∙m | 0.381 | 0.668 | 0.374 | 0.602 |
PPTR, % of the average value | 149 | 167 | 146 | 150 |
Objective function F2 | 0.00801 | 0.00601 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dmitrievskii, V.; Prakht, V.; Kazakbaev, V.; Golovanov, D. Optimum Design of High-Speed Single-Phase Flux Reversal Motor with Reduced Torque Ripple. Appl. Sci. 2020, 10, 6024. https://doi.org/10.3390/app10176024
Dmitrievskii V, Prakht V, Kazakbaev V, Golovanov D. Optimum Design of High-Speed Single-Phase Flux Reversal Motor with Reduced Torque Ripple. Applied Sciences. 2020; 10(17):6024. https://doi.org/10.3390/app10176024
Chicago/Turabian StyleDmitrievskii, Vladimir, Vladimir Prakht, Vadim Kazakbaev, and Dmitry Golovanov. 2020. "Optimum Design of High-Speed Single-Phase Flux Reversal Motor with Reduced Torque Ripple" Applied Sciences 10, no. 17: 6024. https://doi.org/10.3390/app10176024
APA StyleDmitrievskii, V., Prakht, V., Kazakbaev, V., & Golovanov, D. (2020). Optimum Design of High-Speed Single-Phase Flux Reversal Motor with Reduced Torque Ripple. Applied Sciences, 10(17), 6024. https://doi.org/10.3390/app10176024