Design of Antibody-Functionalized Polymeric Membranes for the Immunoisolation of Pancreatic Islets
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Site-Directed Functionalization of the Antibody and Characterization Procedures
2.3. Conformal Encapsulation of Pancreatic Islets in a PEG-Based Hydrogel
2.4. Viability and Functional Assay of Pancreatic Islets
2.5. Immuno-Protection of Pancreatic Islets
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chemical Activation of the Substrate
3.2. GFP Immobilization
3.3. The Acryl-PEG-Anti-GFP Complex
3.4. Acryl-PEG-Anti-GFP Photo-Crosslinking on PEG Hydrogel Using a Selective Mask
3.5. Immuno-Encapsulation of Pancreatic Islets
3.6. Site-Directed Functionalization of an Immunorelevant Antibody
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tatum, J.A.; Meneveau, M.O.; Brayman, K.L. Single-donor islet transplantation in type 1 diabetes: Patient selection and special considerations. Diabetes Metab. Syndr. Obes. Targets Ther. 2017, 10, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, A.M.J.; Bruni, A.; Pepper, A.R.; Gala-Lopez, B.; Abualhassan, N.S. Islet cell transplantation for the treatment of type 1 diabetes: Recent advances and future challenges. Diabetes Metab. Syndr. Obes. Targets Ther. 2014, 7, 211–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Sullivan, E.S.; Vegas, A.; Anderson, D.G.; Weir, G.C. Islets transplanted in immunoisolation devices: A review of the progress and the challenges that remain. Endocr. Rev. 2011, 32, 827–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweicher, J. Membranes to achieve immunoprotection of transplanted islets. Front. Biosci. 2014, 19, 49. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.K.; Yoon, K.-H. Current status of encapsulated islet transplantation. J. Diabetes its Complicat. 2015, 29, 737–743. [Google Scholar] [CrossRef]
- Fotino, N.; Fotino, C.; Pileggi, A. Re-engineering islet cell transplantation. Pharmacol. Res. 2015, 98, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Jiang, S.; Guan, Y.; Deng, J.; Lou, S.; Feng, D.; Kong, D.; Li, C. Pancreatic islet surface engineering with a starPEG-chondroitin sulfate nanocoating. Biomater. Sci. 2019, 7, 2308–2316. [Google Scholar] [CrossRef]
- Bottino, R.; Knoll, M.F.; Knoll, C.A.; Bertera, S.; Trucco, M.M. The Future of Islet Transplantation Is Now. Front. Med. 2018, 5, 202. [Google Scholar] [CrossRef] [Green Version]
- Agulnick, A.D.; Ambruzs, D.M.; Moorman, M.A.; Bhoumik, A.; Cesario, R.M.; Payne, J.K.; Kelly, J.R.; Haakmeester, C.; Srijemac, R.; Wilson, A.Z.; et al. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo. Stem Cells Transl. Med. 2015, 4, 1214–1222. [Google Scholar] [CrossRef]
- Boettler, T.; Schneider, D.; Cheng, Y.; Kadoya, K.; Brandon, E.P.; Martinson, L.; Von Herrath, M.G. Pancreatic Tissue Transplanted in TheraCyte™ Encapsulation Devices Is Protected and Prevents Hyperglycemia in a Mouse Model of Immune-Mediated Diabetes. Cell Transplant. 2016, 25, 609–614. [Google Scholar] [CrossRef] [Green Version]
- Hillberg, A.L.; Kathirgamanathan, K.; Lam, J.B.B.; Law, L.Y.; Garkavenko, O.; Elliott, R.B. Improving alginate-poly-L-ornithine-alginate capsule biocompatibility through genipin crosslinking. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 101, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Aijaz, A.; Perera, D.; Olabisi, R.M. Polymeric Materials for Cell Microencapsulation; Springer Science and Business Media LLC: New York, NY, USA, 2016; Volume 1479, pp. 79–93. [Google Scholar]
- Tomei, A.A.; Manzoli, V.; Fraker, C.A.; Giraldo, J.; Velluto, D.; Najjar, M.; Pileggi, A.; Molano, R.D.; Ricordi, C.; Stabler, C.L.; et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc. Natl. Acad. Sci. USA 2014, 111, 10514–10519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzoli, V.; Villa, C.; Bayer, A.L.; Morales, L.C.; Molano, R.D.; Torrente, Y.; Ricordi, C.; Hubbell, J.A.; Tomei, A.A. Immunoisolation of murine islet allografts in vascularized sites through conformal coating with polyethylene glycol. Arab. Archaeol. Epigr. 2017, 18, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Vaithilingam, V.; Bal, S.; Tuch, B.E. Encapsulated Islet Transplantation: Where Do We Stand? Rev. Diabet. Stud. 2017, 14, 51–78. [Google Scholar] [CrossRef] [Green Version]
- Hill, R.S.; Cruise, G.M.; Hager, S.R.; Lamberti, F.V.; Yu, X.; Garufis, C.L.; Yu, Y.; Mundwiler, K.E.; Cole, J.F.; Hubbell, J.A.; et al. Immunoisolation of Adult Porcine Islets for the Treatment of Diabetes Mellitus. Ann. N. Y. Acad. Sci. 2006, 831, 332–343. [Google Scholar] [CrossRef] [PubMed]
- Scharp, D.; Marchetti, P. Encapsulated islets for diabetes therapy: History, current progress, and critical issues requiring solution. Adv. Drug Deliv. Rev. 2014, 67, 35–73. [Google Scholar] [CrossRef]
- Guarino, V.; Gloria, A.; Raucci, M.G.; Ambrosio, L. Hydrogel-Based Platforms for the Regeneration of Osteochondral Tissue and Intervertebral Disc. Polymers 2012, 4, 1590–1612. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 2010, 31, 4639–4656. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.Y.; Lee, D.Y.; Park, S.J.; Byun, Y. Immune reactions of lymphocytes and macrophages against PEG-grafted pancreatic islets. Biomaterials 2004, 25, 3663–3669. [Google Scholar] [CrossRef]
- Hume, P.S.; Anseth, K.S. Inducing local T cell apoptosis with anti-Fas-functionalized polymeric coatings fabricated via surface-initiated photopolymerizations. Biomaterials 2010, 31, 3166–3174. [Google Scholar] [CrossRef] [Green Version]
- Camarero, J.A. Recent developments in the site-specific immobilization of proteins onto solid supports. Biopolymers 2007, 90, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R.; Zhang, X.; Xu, B. Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins. J. Am. Chem. Soc. 2004, 126, 3392–3393. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Falconnet, D.; Kuennemann, E.; Vörös, J.; Spencer, N.; Textor, M.; Zürcher, S. Nitrilotriacetic Acid Functionalized Graft Copolymers: A Polymeric Interface for Selective and Reversible Binding of Histidine-Tagged Proteins. Adv. Funct. Mater. 2006, 16, 243–251. [Google Scholar] [CrossRef]
- Bassi, R.; Fornoni, A.; Doria, A.; Fiorina, P. CTLA4-Ig in B7-1-positive diabetic and non-diabetic kidney disease. Diabetologia 2015, 59, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rachid, O.; Osman, A.; Abdi, R.; Haik, Y. CTLA4-Ig (abatacept): A promising investigational drug for use in type 1 diabetes. Expert Opin. Investig. Drugs 2020, 29, 221–236. [Google Scholar] [CrossRef]
- Walker, L.S.K.; Sansom, D. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat. Rev. Immunol. 2011, 11, 852–863. [Google Scholar] [CrossRef]
- Bluestone, J.A.; Clair, E.W.S.; Turka, L.A. CTLA4Ig: Bridging the Basic Immunology with Clinical Application. Immunity 2006, 24, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Zachariou, M. Affinity Chromatography; Humana Press: Totowa, NJ, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Cavallo, A.; Madaghiele, M.; Masullo, U.; Lionetto, M.G.; Sannino, A. Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies. J. Appl. Polym. Sci. 2016, 134, 134. [Google Scholar] [CrossRef]
- Chuang, Y.-J.; Tseng, F.-G.; Lin, W.-K. Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination. Microsyst. Technol. 2002, 8, 308–313. [Google Scholar] [CrossRef]
- Noy, A. Chemical force microscopy of chemical and biological interactions. Surf. Interface Anal. 2006, 38, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, D.K. Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 2001, 52, 107–137. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.; Zurcher, S.; Falconnet, D.; Xu, F.; Kuennemann, E.; Textor, M. NTA-Functionalized Poly(L-lysine)-g-Poly(Ethylene Glycol): A Polymeric Interface for Binding and Studying 6 His-tagged Proteins. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2005; Volume 1, pp. 1036–1038. [Google Scholar]
- Schmitt, J.; Hess, H.; Stunnenberg, H.G. Affinity purification of histidine-tagged proteins. Mol. Boil. Rep. 1993, 18, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Y.; Hu, T.; Li, X.; Huang, Y.; Liu, Y.; Ma, G.; Su, Z. An oriented adsorption strategy for efficient solid phase PEGylation of recombinant staphylokinase by immobilized metal-ion affinity chromatography. Process. Biochem. 2012, 47, 106–112. [Google Scholar] [CrossRef]
- Rusmini, F.; Zhong, Z.; Feijen, J. Protein Immobilization Strategies for Protein Biochips. Biomacromolecules 2007, 8, 1775–1789. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Snyder, M. Protein chip technology. Curr. Opin. Chem. Boil. 2003, 7, 55–63. [Google Scholar] [CrossRef]
- Niwa, H.; Inouye, S.; Hirano, T.; Matsuno, T.; Kojima, S.; Kubota, M.; Ohashi, M.; Tsuji, F.I. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc. Natl. Acad. Sci. USA 1996, 93, 13617–13622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, W.W.; Cody, C.W.; Hart, R.C.; Cormier, M.J. Spectrophotometric identity of the energy transfer chromophores in renilla and aequorea green-fluorescent proteins. Photochem. Photobiol. 1980, 31, 611–615. [Google Scholar] [CrossRef]
- Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 1998, 67, 509–544. [Google Scholar] [CrossRef]
- Bokman, S.H.; Ward, W.W. Renaturation of Aequorea green-fluorescent protein. Biochem. Biophys. Res. Commun. 1981, 101, 1372–1380. [Google Scholar] [CrossRef]
- Ward, W.W.; Prentice, H.J.; Roth, A.F.; Cody, C.W.; Reeves, S.C. Spectral perturbations of the aequorea green-fluorescent protein. Photochem. Photobiol. 1982, 35, 803–808. [Google Scholar] [CrossRef]
- Harper, B.K.; Mabon, S.A.; Leffel, S.M.; Halfhill, M.D.; Richards, H.A.; Moyer, K.A.; Stewart, C.N., Jr. Green fluorescent protein as a marker for expression of a second gene in transgenic plants. Nat. Biotechnol. 1999, 17, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Tsaltas, G.; Ford, C.H. Cell Membrane Antigen-Antibody Complex Dissociation by the Widely Used Glycine-Hcl Method: An Unreliable Procedure for Studying Antibody Internalization. Immunol. Investig. 1993, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.M.; Mullen, A.C.; Villarino, A.V.; Hutchins, A.S.; High, F.A.; Lee, H.W.; Thompson, C.B.; Reiner, S. Induction of Cytotoxic T Lymphocyte Antigen 4 (Ctla-4) Restricts Clonal Expansion of Helper T Cells. J. Exp. Med. 2001, 194, 893–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon, B.; Bluestone, J.A. Complexities of cd28/b7: Ctla-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 2001, 19, 225–252. [Google Scholar] [CrossRef] [PubMed]
- Lenschow, D.; Zeng, Y.; Thistlethwaite, J.R.; Montag, A.; Brady, W.; Gibson, M.; Linsley, P.; Bluestone, J. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4lg. Science 1992, 257, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Alegre, M.-L.; Fallarino, M.-L.A.A.F. Mechanisms of CTLA-4-Ig in Tolerance Induction. Curr. Pharm. Des. 2006, 12, 149–160. [Google Scholar] [CrossRef]
- Linsley, P.; Wallace, P.; Johnson, J.; Gibson, M.; Greene, J.; Ledbetter, J.; Singh, C.; Tepper, M. Immunosuppression in vivo by a soluble form of the CTLA-4 T cell activation molecule. Science 1992, 257, 792–795. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallo, A.; Masullo, U.; Quarta, A.; Sannino, A.; Barca, A.; Verri, T.; Madaghiele, M.; Blasi, L. Design of Antibody-Functionalized Polymeric Membranes for the Immunoisolation of Pancreatic Islets. Appl. Sci. 2020, 10, 6056. https://doi.org/10.3390/app10176056
Cavallo A, Masullo U, Quarta A, Sannino A, Barca A, Verri T, Madaghiele M, Blasi L. Design of Antibody-Functionalized Polymeric Membranes for the Immunoisolation of Pancreatic Islets. Applied Sciences. 2020; 10(17):6056. https://doi.org/10.3390/app10176056
Chicago/Turabian StyleCavallo, Anna, Ugo Masullo, Alessandra Quarta, Alessandro Sannino, Amilcare Barca, Tiziano Verri, Marta Madaghiele, and Laura Blasi. 2020. "Design of Antibody-Functionalized Polymeric Membranes for the Immunoisolation of Pancreatic Islets" Applied Sciences 10, no. 17: 6056. https://doi.org/10.3390/app10176056
APA StyleCavallo, A., Masullo, U., Quarta, A., Sannino, A., Barca, A., Verri, T., Madaghiele, M., & Blasi, L. (2020). Design of Antibody-Functionalized Polymeric Membranes for the Immunoisolation of Pancreatic Islets. Applied Sciences, 10(17), 6056. https://doi.org/10.3390/app10176056