Implementation of Auto-Hydrolysis Process for the Recovery of Antioxidants and Cellulose from Wheat Straw
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Fractionation Process
Acid and Auto-Hydrolysis
2.2. Kinetics of the Acid Hydrolysis and Auto-Hydrolysis Step
2.3. Structural Carbohydrates
2.4. Total Phenolic Content (Folin’s Assay)
2.5. Total Cinnamic Acids Content
2.6. Ferric Reducing/Antioxidant Power (FRAP Assay)
2.7. Antioxidant Power (ABTS Assay)
2.8. Radical Scavenging Activity (Superoxide Assay)
2.9. Phenolic Profile and Sugar Degradation Products
2.10. Free Sugars and Acetic Acid
3. Results and Discussion
3.1. Cellulose Isolation
3.2. Total Phenols and Cinnamic Acids Content
3.3. Antioxidant Power (FRAP, ABTS and SRSA Assays)
3.4. Phenolic Profile, Sugars and Sugar Degradation Compounds
3.5. Kinetics of the Acid Hydrolysis and Auto-Hydrolysis Step
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tomás-Pejó, E.; Fermoso, J.; Herrador, E.; Hernando, H.; Jiménez-Sánchez, S.; Ballesteros, M.; González-Fernández, C.; Serrano, D.P. Valorization of steam-exploded wheat straw through a biorefinery approach: Bioethanol and bio-oil co-production. Fuel 2017, 199, 403–412. [Google Scholar] [CrossRef]
- Schnitzer, M.; Monreal, C.M.; Powell, E.E. Wheat straw biomass: A resource for high-value chemicals. J. Environ. Sci. Health B 2014, 49, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Duarte, L.C.; Esteves, M.P.; Carvalheiro, F.; Gírio, F.M. Biotechnological valorization potential indicator for lignocellulosic materials. Biotechnol. J. 2007, 2, 1556–1563. [Google Scholar] [CrossRef] [PubMed]
- Pig-World. Available online: http://www.pig-world.co.uk/news/44718.html (accessed on 30 July 2020).
- Ruiz, H.A.; Vicente, A.A.; Teixeira, J.A. Kinetic modeling of enzymatic saccharification using wheat straw pretreated under autohydrolysis and organosolv process. Ind. Crops Prod. 2012, 36, 100–107. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 30 July 2020).
- Vadivel, V.; Moncalvo, A.; Dordoni, R.; Spigno, G. Effects of an acid/alkaline treatment on the release of antioxidants and cellulose from different agro-food wastes. Waste Manag. 2017, 64, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Bilalis, D.; Sidiras, N.; Economou, G.; Vakali, C. Effect of different levels of wheat straw soil surface coverage on weed flora in Vicia faba crops. J. Agron. Crop Sci. 2003, 189, 233–241. [Google Scholar] [CrossRef]
- Kumar, S.; Gomes, J. Performance evaluation of reactors designed for bioconversion of wheat straw to animal feed. Anim. Feed Sci. Technol. 2008, 144, 149–166. [Google Scholar] [CrossRef]
- Ward, P.L.; Wohlt, J.E.; Zajac, P.K.; Cooper, K.R. Chemical and physical properties of processed newspaper compared to wheat straw and wood shavings as animal bedding. J. Dairy Sci. 2000, 83, 359–367. [Google Scholar] [CrossRef]
- Thomsen, M.H.; Thygesen, A.; Jørgensen, H.; Larsen, J.; Christensen, B.H.; Thomsen, A.B. Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity. Appl. Biochem. Biotechnol. 2006, 130, 448–460. [Google Scholar] [CrossRef]
- Deniz, I.; Kirci, H.; Ates, S. Optimisation of wheat straw Triticum drum kraft pulping. Ind. Crops Prod. 2004, 19, 237–243. [Google Scholar] [CrossRef]
- Gupta, A.; Verma, J.P. Sustainable bio-ethanol production from agro-residues: A review. Renew. Sustain. Energy Rev. 2015, 41, 550–567. [Google Scholar] [CrossRef]
- Akpinar, O.; Sabanci, S.; Levent, O.; Sayaslan, A. Evaluation of antioxidant activity of dilute acid hydrolysate of wheat straw during xylose production. Ind. Crops Prod. 2012, 40, 39–44. [Google Scholar] [CrossRef]
- Carvalheiro, F.; Silva-Fernandes, T.; Duarte, L.C.; Gírio, F.M. Wheat straw autohydrolysis: Process optimization and products characterization. Appl. Biochem. Biotechnol. 2009, 153, 84–93. [Google Scholar] [CrossRef]
- Gosselink, R.J.A.; Teunissen, W.; van Dam, J.E.G.; de Jong, E.; Gellerstedt, G.; Scott, E.L.; Sanders, J.P.M. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresour. Technol. 2012, 106, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Rémond, C.; Aubry, N.; Crônier, D.; Noël, S.; Martel, F.; Roge, B.; Rakotoarivonina, H.; Debeire, P.; Chabbert, B. Combination of ammonia and xylanase pretreatments: Impact on enzymatic xylan and cellulose recovery from wheat straw. Bioresour. Technol. 2010, 101, 6712–6717. [Google Scholar] [CrossRef]
- Ruiz, H.A.; Ruzene, D.S.; Silva, D.P.; Da Silva, F.F.M.; Vicente, A.A.; Teixeira, J.A. Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Appl. Biochem. Biotechnol. 2011, 164, 629–641. [Google Scholar] [CrossRef] [Green Version]
- Andersone, I.; Andersons, B.; Avramidis, G.; Barbu, M.C.; Bergland, L.; Clemons, C.M.; Dietenberger, M.A.; Evans, P.D.; Frihart, C.R.; Ibach, R.E.; et al. Handbook of Wood Chemistry and Wood Composites, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 9781439853818. [Google Scholar]
- Yu, J.; Vasanthan, T.; Temelli, F. Analysis of phenolic acids in barley by high-performance liquid chromatography. J. Agric. Food Chem. 2001, 49, 4352–4358. [Google Scholar] [CrossRef]
- Sun, R.-C.; Sun, X.-F.; Zhang, S.-H. Quantitative determination of hydroxycinnamic acids in wheat, rice, rye, and barley straws, maize stems, oil palm frond fiber, and fast-growing poplar wood. J. Agric. Food Chem. 2001, 49, 5122–5129. [Google Scholar] [CrossRef]
- Tilay, A.; Bule, M.; Kishenkumar, J.; Annapure, U. Preparation of ferulic acid from agricultural wastes: Its improved extraction and purification. J. Agric. Food Chem. 2008, 56, 7644–7648. [Google Scholar] [CrossRef]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. In Proceedings of the Procedia Chemistry; 5th Symposium by Nordic Separation Science Society, NoSSS 2009, Tallinn, Estonia, 26–29 August 2009; Volume 2, pp. 76–82. [Google Scholar]
- Bauer, J.L.; Harbaum-Piayda, B.; Schwarz, K. Phenolic compounds from hydrolyzed and extracted fiber-rich by-products. LWT Food Sci. Technol. 2012, 47, 246–254. [Google Scholar] [CrossRef]
- Cruz, J.M.; Domínguez, J.M.; Domínguez, H.; Parajó, J.C. Antioxidant and antimicrobial effects of extracts from hydrolysates of lignocellulosic materials. J. Agric. Food Chem. 2001, 49, 2459–2464. [Google Scholar] [CrossRef] [PubMed]
- De Vasconcelos, M.C.B.M.; Bennett, R.; Castro, C.; Cardoso, P.; Saavedra, M.J.; Rosa, E.A. Study of composition, stabilization and processing of wheat germ and maize industrial by-products. Ind. Crops Prod. 2013, 42, 292–298. [Google Scholar] [CrossRef]
- Torre, P.; Aliakbarian, B.; Rivas, B.; Domínguez, J.M.; Converti, A. Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochem. Eng. J. 2008, 40, 500–506. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Mazza, G. Triticale bran and straw: Potential new sources of phenolic acids, proanthocyanidins, and lignans. J. Funct. Foods 2009, 1, 57–64. [Google Scholar] [CrossRef]
- Lapierre, C.; Pollet, B.; Ralet, M.-C.; Saulnier, L. The phenolic fraction of maize bran: Evidence for lignin-heteroxylan association. Phytochemistry 2001, 57, 765–772. [Google Scholar] [CrossRef]
- Min, B.; McClung, A.M.; Chen, M.-H. Phytochemicals and Antioxidant Capacities in Rice Brans of Different Color. J. Food Sci. 2011, 76. [Google Scholar] [CrossRef]
- Tuncel, N.B.; Yilmaz, N. Gamma-oryzanol content, phenolic acid profiles and antioxidant activity of rice milling fractions. Eur. Food Res. Technol. 2011, 233, 577–585. [Google Scholar] [CrossRef]
- Lehtinen, P.; Laakso, S. Effect of extraction conditions on the recovery and potency of antioxidants in oat fiber. J. Agric. Food Chem. 1998, 46, 4842–4845. [Google Scholar] [CrossRef]
- De Abreu, D.A.P.; Rodriguez, K.V.; Cruz, J.M. Extraction, purification and characterization of an antioxidant extract from barley husks and development of an antioxidant active film for food package. Innov. Food Sci. Emerg. Technol. 2012, 13, 134–141. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1–11. [Google Scholar] [CrossRef]
- Bassani, A.; Alberici, N.; Fiorentini, C.; Giuberti, G.; Dordoni, R.; Spigno, G. Hydrothermal treatment of grape skins for sugars, antioxidants and soluble fibers production. Chem. Eng. Trans. 2020, 79, 127–132. [Google Scholar] [CrossRef]
- Amendola, D.; De Faveri, D.M.; Egües, I.; Serrano, L.; Labidi, J.; Spigno, G. Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks. Bioresour. Technol. 2012, 107, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Moure, A.; Domínguez, H.; Parajó, J.C. Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT Food Sci. Technol. 2011, 44, 436–442. [Google Scholar] [CrossRef]
- Garrote, G.; Cruz, J.M.; Domínguez, H.; Parajó, J.C. Valorisation of waste fractions from autohydrolysis of selected lignocellulosic materials. J. Chem. Technol. Biotechnol. 2003, 78, 392–398. [Google Scholar] [CrossRef]
- Conde, E.; Gullón, P.; Moure, A.; Domínguez, H.; Parajó, J.C. Fractionation of industrial solids containing barley husks in aqueous media. Food Bioprod. Process. 2009, 87, 208–214. [Google Scholar] [CrossRef]
- Castro, E.; Conde, E.; Moure, A.; Falqué, E.; Cara, C.; Ruiz, E.; Domínguez, H. Antioxidant activity of liquors from steam explosion of Olea europea wood. Wood Sci. Technol. 2008, 42, 579–592. [Google Scholar] [CrossRef]
- Egüés, I.; Sanchez, C.; Mondragon, I.; Labidi, J. Antioxidant activity of phenolic compounds obtained by autohydrolysis of corn residues. Ind. Crops Prod. 2012, 36, 164–171. [Google Scholar] [CrossRef]
- Carvalheiro, F.; Duarte, L.C.; Gírio, F.; Moniz, P. Hydrothermal/liquid hot water pretreatment (autohydrolysis): A multipurpose process for biomass upgrading. In Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery; Elsevier: Amsterdam, The Netherlands, 2016; pp. 315–347. ISBN 9780128025611. [Google Scholar]
- Pérez, J.A.; González, A.; Oliva, J.M.; Ballesteros, I.; Manzanares, P. Effect of process variables on liquid hot water pretreatment of wheat straw for bioconversion to fuel-ethanol in a batch reactor. J. Chem. Technol. Biotechnol. 2007, 82, 929–938. [Google Scholar] [CrossRef]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of structural carbohydrates and lignin in biomass determination of structural carbohydrates and lignin in biomass. Natl. Renew. Energy Lab. 2010. [Google Scholar]
- Alberici, N.; Fiorentini, C.; House, A.; Dordoni, R.; Bassani, A.; Spigno, G. Enzymatic pre-treatment of fruit pomace for fibre hydrolysis and antioxidants release. Chem. Eng. Trans. 2020, 79, 175–180. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, The Chemistry of Wine: Stabilization and Treatments, 2nd ed.; Wiley: Chichester, UK, 2006; ISBN 9780470010396. [Google Scholar]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.S.; Mubeen, U. Wheat straw: A pragmatic overview. Curr. Res. J. Biol. Sci. 2012, 4, 673–675. [Google Scholar]
- Shinde, S.D.; Meng, X.; Kumar, R.; Ragauskas, A.J. Recent advances in understanding the pseudo-lignin formation in a lignocellulosic biorefinery. Green Chem. 2018, 20, 2192–2205. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Ertas, M.; Han, Q.; Jameel, H.; Chang, H.-M. Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars. Bioresour. Technol. 2014, 152, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Tomkinson, J. Separation and characterization of cellulose from wheat straw. Sep. Sci. Technol. 2005, 39, 391–411. [Google Scholar] [CrossRef]
- Montané, D.; Farriol, X.; Salvadó, J.; Jollez, P.; Chornet, E. Fractionation of wheat straw by steam-explosion pretreatment and alkali delignification. cellulose pulp and byproducts from hemicellulose and lignin. J. Wood Chem. Technol. 1998, 18, 171–191. [Google Scholar] [CrossRef]
- Horn, S.J.; Nguyen, Q.D.; Westereng, B.; Nilsen, P.J.; Eijsink, V.G.H. Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass Bioenergy 2011, 35, 4879–4886. [Google Scholar] [CrossRef]
- Da Costa Lopes, A.M.; João, K.G.; Rubik, D.F.; Bogel-Łukasik, E.; Duarte, L.C.; Andreaus, J.; Bogel-Łukasik, R. Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation. Bioresour. Technol. 2013, 142, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Dávila, I.; Labidi, J.; Gullón, P. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Ind. Crops Prod. 2017, 107, 105–113. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Optimization of autohydrolysis conditions to extract antioxidant phenolic compounds from spent coffee grounds. J. Food Eng. 2017, 199, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Chan, K.F.; Hui, C.W.; Yim, H.K.; Wu, X.W.; Wong, H.N.C. Use of furans in synthesis of bioactive compounds. In Proceedings of the Pure and Applied Chemistry; 24th International Symposium on the Chemistry of Natural Products and the 4th International Congress on Biodiversity, Delhi, India, 26–31 January 2004; Volume 77, pp. 139–143. [Google Scholar]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Akpinar, O.; Gunay, K.; Yilmaz, Y.; Levent, O.; Bostanci, S. Enzymatic processing and antioxidant activity of agricultural waste autohydrolysis liquors. BioResources 2010, 5, 699–711. [Google Scholar]
- Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [Green Version]
Auto-Hydrolysis | Acid Hydrolysis | |
---|---|---|
Fiber residue yield (g/100 gwheat straw dm) | 20.41 ± 0.22 | 17.56 ± 0.37 |
Cellulose (g/100 gfiber residue dm) | 77.79 ± 0.85 | 85.98 ± 1.84 |
Cellulose yield (g/100 gwheat straw dm) | 15.88 ± 0.17 | 15.10 ± 0.32 |
Cellulose recovery (g/100 gcellulose wheat straw dm) | 47.01 ± 0.51 | 44.70 ± 0.92 |
Hemicellulose (g/100 gfiber residue dm) | 1.01 ± 0.02 | 2.05 ± 0.11 |
Acetic acid (g/100 gfiber residue dm) | 0.19 ± 0.02 | 0.59 ± 0.01 |
Acid soluble lignin (g/100 gfiber residue dm) | 0.90 ± 0.04 | 1.09 ± 0.03 |
Acid insoluble lignin (g/100 gfiber residue dm) | 5.47 ± 0.50 | 12.43 ± 0.24 |
Parameter | Auto-Hydrolysis | Acid Hydrolysis | ||
---|---|---|---|---|
mg/L | mg/gdmWS | mg/L | mg/gdmWS | |
Total phenols (Folin_GAE) | 1532.28 ± 61.56 | 20.06 ± 0.77 | 1211.86 ± 71.66 | 4.70 ± 0.29 |
Total phenols (280_GAE) | 4990.78 ± 401.01 | 65.32 ± 5.12 | 6932.85 ± 240.63 | 27.24 ± 0.95 |
Cinnamic acids (FAE) | 137.91 ± 52.42 | 1.81 ± 0.69 | 41.64 ± 11.49 | 0.16 ± 0.05 |
Parameter | Auto-Hydrolysis | Acid Hydrolysis |
---|---|---|
FRAP µmolFe/gdmWS | 309.26 ± 32.42 | 67.27 ± 2.00 |
FRAP molFe/molGAE | 2.62 ± 0.27 | 2.44 ± 0.07 |
ABTS µmolTrolox/gdmWS | 93.89 ± 6.47 | 4.06 ± 1.32 |
ABTS molTrolox/molGAE | 0.80 ± 0.05 | 0.15 ± 0.05 |
Superoxide (%SRSA/mgdmWS) | 387.15 ± 79.94 | 80.49 ± 11.91 |
Superoxide (%SRSA/µMGAE) | 0.34 ± 0.072 | 0.29 ± 0.048 |
Auto-hydrolysis | Acid Hydrolysis | |||
---|---|---|---|---|
mg/L | mg/gdw | mg/L | mg/gdw | |
Glucose | 61.96 ± 1.70 | 0.81 ± 0.02 | 958.33 ± 16.95 | 3.71 ± 0.07 |
Xylose | 169.56 ± 19.56 | 2.22 ± 0.26 | 15993.18 ± 538.20 | 61.97 ± 2.08 |
Acetic acid | 132.27 ± 8.54 | 1.73 ± 0.11 | 2491.69 ± 4.86 | 9.66 ± 0.67 |
5-HMF | 112.15 ± 0.23 | 1.47 ± 0.01 | 22.30 ± 0.46 | 0.17 ± 0.01 |
Furfural | 1389.59 ± 1.13 | 18.23 ± 0.02 | 1139.61 ± 31.72 | 8.84 ± 0.25 |
5-MF | 18.21 ± 0.16 | 0.24 ± 0.002 | 2.38 ± 0.07 | 0.02 ± 0.01 |
p-hydroxibenzoic acid | ND | ND | ND | ND |
Gentisic acid | ND | ND | ND | ND |
Vanillic acid | ND | ND | 1.30 ± 0.09 | 0.01 ± 0.01 |
Caffeic acid | ND | ND | 1.62 ± 0.16 | 0.01 ± 0.01 |
Siringic acid | ND | ND | 1.65 ± 0.07 | 0.01 ± 0.01 |
Vanillin | 29.34 ± 0.09 | 0.385 ± 0.01 | 5.33 ± 0.15 | 0.04 ± 0.01 |
Syringaldehyde | 3.53 ± 0.26 | 0.046 ± 0.01 | 3.06 ± 0.04 | 0.02 ± 0.01 |
Ferulic acid | ND | ND | ND | ND |
Sinapic acid | ND | ND | ND | ND |
Time [min] | Acid Hydrolysis | Auto-Hydrolysis | ||
---|---|---|---|---|
D-Glu [g/L] | D-Xyl [g/L] | D-Glu [g/L] | D-Xyl [g/L] | |
0 | 1.64 ± 0.24 | 12.92 ± 0.17 | 0.06 ± 0.2 | 0.02 ± 0.01 |
10 | 2.02 ± 0.10 | 13.51 ± 0.25 | 0.11 ± 0.2 | 0.43 ± 0.05 |
20 | 0.86 ± 0.01 | 15.11 ± 0.49 | - | - |
30 | 0.93 ± 0.06 | 15.76 ± 0.57 | - | - |
45 | 0.96 ± 0.02 | 15.99 ± 0.54 | - | - |
180 | - | - | 0.14 ± 0.3 | 0.32 ± 0.02 |
Compound (mg/L) | Time of Hydrolysis (min) | |||||
---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 45 | 180 | |
5-HMF Acid hydrolysis | 67.73 ± 11.68 | 90.14 ± 2.49 | 97.51 ± 2.98 | 83.28 ± 3.43 | 58.91 ± 4.22 | - |
Auto-hydrolysis | nd | 18.77 ± 3.37 | - | - | - | 80.07 ± 5.86 |
Furfural Acid hydrolysis | 155.65 ± 5.34 | 388.55 ± 21.97 | 458.42 ± 32.38 | 785.49 ± 7.73 | 785.44 ± 53.49 | - |
Auto-hydrolysis | 6.37 ± 0.02 | 275.40 ± 15.09 | - | - | - | 828.48 ± 140.30 |
5-MF Acid hydrolysis | 0.79 ± 0.14 | 1.22 ± 0.06 | 2.15 ± 0.06 | 3.68 ± 0.16 | 3.23 ± 0.01 | - |
Auto-hydrolysis | n.d. | 9.67 ± 0.14 | - | - | - | 17.36 ± 2.04 |
Vanillin Acid hydrolysis | 2.98 ± 0.38 | 4.26 ± 0.26 | 4.72 ± 0.27 | 5.66 ± 0.26 | 5.51 ± 0.04 | - |
Auto-hydrolysis | 5.31 ± 0.18 | 17.74 ± 0.15 | - | - | - | 26.43 ± 1.73 |
Syringaldehyde Acid hydrolysis | 18.78 ± 1.45 | 9.64 ± 0.54 | 9.61 ± 0.27 | 7.32 ± 0.34 | 6.39 ± 0.17 | - |
Auto-hydrolysis | 3.42 ± 0.42 | 15.33 ± 1.27 | - | - | - | 20.44 ± 2.59 |
p-cumaric acid Acid hydrolysis | 8.83 ± 0.92 | 2.97 ± 0.30 | 3.22 ± 0.48 | 1.67 ± 0.20 | 1.19 ± 0.15 | - |
Auto-hydrolysis | n.d. | n.d. | - | - | - | 5.94 ± 0.80 |
Ferulic acid Acid hydrolysis | 58.44 ± 4.26 | 26.27 ± 2.52 | 23.97 ± 3.12 | 9.55 ± 0.50 | 6.38 ± 0.74 | - |
Auto-hydrolysis | 604.40 ± 5.04 | 1064.71 ± 148.47 | - | - | - | 1264.32 ± 244.39 |
Acetic acid Acid hydrolysis | 1827.51 ± 225.99 | 2498.57 ± 195.67 | 2561.61 ± 322.03 | 2440.16 ± 98.33 | 2333.79 ± 267.20 | - |
Auto-hydrolysis | 1495.80 ± 12.95 | 3114.70 ± 23.70 | - | - | - | 3081.95 ± 670.20 |
Formic acid Acid hydrolysis | n.d. | n.d. | n.d. | 2029.26 ± 221.39 | 2969.06 ± 156.66 | - |
Auto-hydrolysis | n.d. | n.d. | - | - | - | 80.07 ± 5.86 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassani, A.; Fiorentini, C.; Vadivel, V.; Moncalvo, A.; Spigno, G. Implementation of Auto-Hydrolysis Process for the Recovery of Antioxidants and Cellulose from Wheat Straw. Appl. Sci. 2020, 10, 6112. https://doi.org/10.3390/app10176112
Bassani A, Fiorentini C, Vadivel V, Moncalvo A, Spigno G. Implementation of Auto-Hydrolysis Process for the Recovery of Antioxidants and Cellulose from Wheat Straw. Applied Sciences. 2020; 10(17):6112. https://doi.org/10.3390/app10176112
Chicago/Turabian StyleBassani, Andrea, Cecilia Fiorentini, Vellingiri Vadivel, Alessandro Moncalvo, and Giorgia Spigno. 2020. "Implementation of Auto-Hydrolysis Process for the Recovery of Antioxidants and Cellulose from Wheat Straw" Applied Sciences 10, no. 17: 6112. https://doi.org/10.3390/app10176112
APA StyleBassani, A., Fiorentini, C., Vadivel, V., Moncalvo, A., & Spigno, G. (2020). Implementation of Auto-Hydrolysis Process for the Recovery of Antioxidants and Cellulose from Wheat Straw. Applied Sciences, 10(17), 6112. https://doi.org/10.3390/app10176112