The Heat Pulse Method for Soil Physical Measurements: A Bibliometric Analysis
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
3.1. Annual Publication Trend
3.2. Co-Authorship of Authors, Organizations and Countries
3.3. The Most Recognized Journals
3.4. History of the Heat Pulse Method and the Highly Impacted Studies
3.5. Co-Occurrence Analysis of Keywords
4. Conclusions and Perspectives
- (1)
- A new design of heat pulse probes with good performance at a lower cost and higher energy efficiency. The cost of the currently available heat pulse sensors impedes the wide application of the heat pulse method and the high energy consumption hinders the continuous measurement of soil thermal properties at remote locations with limited access to a power grid. This may explain why none of the meteorological stations install heat pulse sensors, but sensors of soil water/moisture and temperature. In addition, the thermo-TDR is limited by the short length of the probe needle that affects the accuracy of estimating soil water content [91,100]. Because FDR is less likely to be affected by the probe length [53,101] and Acclima Inc. developed the TDR 305 with TDR needles of 5-cm length, operating at 2 GHz, to accurately estimate soil water content. Possible solutions to this are to combine the heat pulse probe with FDR operating at dual frequencies (e.g., KHz and MHz) or TDR operating at a high frequency (e.g., ~2 GHz);
- (2)
- The development of a database on soil thermal properties. Soil thermal properties affect agricultural microclimates and therefore influence seed germination, seedling development and the subsequent establishment of stand, soil thermal regime, and the development and calibration of soil thermal conductivity models [102,103,104,105,106,107]. They also play a key role in the mass and energy exchange through porous media and interactions between the ground and atmosphere, influencing climate at regional and global scales [108,109,110,111,112,113,114,115,116]. Unlike the hydraulic properties [117,118,119], there is no database on experimental measurements of soil thermal properties. There is an urgent call to establish such a database.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hillel, D. Introduction to Environmental Soil Physics; Elsevier BV: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Peters-Lidard, C.; Blackburn, E.; Liang, X.; Wood, E.F. The Effect of Soil Thermal Conductivity Parameterization on Surface Energy Fluxes and Temperatures. J. Atmos. Sci. 1998, 55, 1209–1224. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Wang, J.; Wang, S.; Chang, S.X.; Cai, Z.; Zhang, J.; Niu, S.; Hu, S. Nitrogen deposition differentially affects soil gross nitrogen transformations in organic and mineral horizons. Earth-Sci. Rev. 2020, 201, 103033. [Google Scholar] [CrossRef]
- He, H.; Noborio, K.; Johansen, Ø.; Dyck, M.; Lv, J. Normalized concept for effective soil thermal conductivity modelling from dryness to saturation. Eur. J. Soil Sci. 2020, 71, 27–43. [Google Scholar] [CrossRef]
- Liu, G.; Lu, Y.; Wen, M.; Ren, T.; Horton, R. Advances in the Heat-Pulse Technique: Improvements in Measuring Soil Thermal Properties. Methods Soil Anal. 2017, 2. [Google Scholar] [CrossRef]
- Wang, J.; He, D.; Dyck, M.; He, H. Theory and Solutions of Heat Pulse Method for Determining Soil Thermal Properties. IOP Conf. Series Earth Environ. Sci. 2020, 440, 440. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids, 2nd ed.; Clarendon Press: Oxford, UK, 1959. [Google Scholar]
- Bristow, K.L.; Campbell, G.S.; Calissendorff, K. Test of a Heat-Pulse Probe for Measuring Changes in Soil Water Content. Soil Sci. Soc. Am. J. 1993, 57, 930–934. [Google Scholar] [CrossRef]
- Campbell, G.S.; Calissendorff, C.; Williams, J.H. Probe for Measuring Soil Specific Heat Using A Heat-Pulse Method. Soil Sci. Soc. Am. J. 1991, 55, 291–293. [Google Scholar] [CrossRef] [Green Version]
- De Vries, D.A. A Nonstationary Method for Determining Thermal Conductivity of Soil in situ. Soil Sci. 1952, 73, 83–90. [Google Scholar] [CrossRef]
- Shiozawa, S.; Campbell, G.S. Soil thermal conductivity. Remote. Sens. Rev. 1990, 5, 301–310. [Google Scholar] [CrossRef]
- Zent, A.; Hecht, M.H.; Cobos, D.R.; Wood, S.E.; Hudson, T.L.; Milkovich, S.M.; DeFlores, L.P.; Mellon, M.T. Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res. Space Phys. 2010, 115, E3. [Google Scholar] [CrossRef]
- Zent, A.P.; Hecht, M.H.; Cobos, D.R.; Campbell, G.S.; Campbell, C.S.; Cardell, G.; Foote, M.C.; Wood, S.E.; Mehta, M. Thermal and Electrical Conductivity Probe (TECP) for Phoenix. J. Geophys. Res. Space Phys. 2009, 114, E3. [Google Scholar] [CrossRef]
- Nagihara, S.; Hedlund, M.; Zacny, K.; Taylor, P.T. Improved data reduction algorithm for the needle probe method applied to in-situ thermal conductivity measurements of lunar and planetary regoliths. Planet. Space Sci. 2014, 92, 49–56. [Google Scholar] [CrossRef]
- Marczewski, W.; Schroer, K.; Seiferlin, K.; Usowicz, B.; Banaszkiewicz, M.; Hlond, M.; Grygorczuk, J.; Gadomski, S.; Krasowski, J.; Gregorczyk, W.; et al. Prelaunch performance evaluation of the cometary experiment MUPUS-TP. J. Geophys. Res. Space Phys. 2004, 109, 109. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, X.; Wang, X. Validation of a Thermo–Time Domain Reflectometry Probe for Sand Thermal Conductivity Measurement in Drainage and Drying Processes. Geotech. Test. J. 2018, 41, 20160314. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, X.; Wang, X. Use of a thermo-TDR probe to measure sand thermal conductivity dryout curves (TCDCs) and model prediction. Int. J. Heat Mass Transf. 2017, 115, 1054–1064. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Horton, R.; Ren, T. Simultaneous Water Content, Air-Filled Porosity, and Bulk Density Measurements with Thermo-Time Domain Reflectometry. Soil Sci. Soc. Am. J. 2001, 65, 1618–1622. [Google Scholar] [CrossRef]
- Ren, T.; Ochsner, T.E.; Horton, R. Development of thermo-time domain reflectometry for vadose zone measurements. Vadose Zone J. 2003, 2, 544–551. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H. Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes. J. Agric. Eng. Res. 2001, 80, 209–216. [Google Scholar] [CrossRef]
- He, H.; Dyck, M.; Horton, R.; Ren, T.; Bristow, K.L.; Lv, J.; Si, B.C. Development and Application of the Heat Pulse Method for Soil Physical Measurements. Rev. Geophys. 2018, 56, 567–620. [Google Scholar] [CrossRef]
- Mori, Y.; Whopmans, J.; Mortensen, A.P.; Kluitenberg, G.J. Estimation of Vadose Zone Water Flux from Multi-Functional Heat Pulse Probe Measurements. Soil Sci. Soc. Am. J. 2005, 69, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Heitman, J.L.; Horton, R.; Ren, T.; Nassar, I.N.; Davis, D.D. A Test of Coupled Soil Heat and Water Transfer Prediction under Transient Boundary Temperatures. Soil Sci. Soc. Am. J. 2008, 72, 1197–1207. [Google Scholar] [CrossRef]
- He, H.; Dyck, M.; Horton, R.; Li, M.; Jin, H.; Si, B.C. Distributed Temperature Sensing for Soil Physical Measurements and Its Similarity to Heat Pulse Method. In Advances in Agronomy; Elsevier BV: Amsterdam, The Netherlands, 2018; Volume 148, pp. 173–230. [Google Scholar]
- Woodside, W.; Messmer, J.H. Thermal conductivity of porous media. I. Unconsolidated sands. J. Appl. Phys. 1961, 32, 1688–1699. [Google Scholar] [CrossRef]
- Woodside, W.; Messmer, J.H. Thermal conductivity of porous media. Ii. Consolidated rocks. J. Appl. Phys. 1961, 32, 1699–1706. [Google Scholar] [CrossRef]
- Heitman, J.L.; Zhang, X.; Xiao, X.; Ren, T.; Horton, R. Advances in Heat-Pulse Methods: Measuring Soil Water Evaporation with Sensible Heat Balance. Methods Soil Anal. 2017, 2, 2. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, X.; Zhang, M.; Heitman, J.; Horton, R.; Ren, T. Thermo–Time Domain Reflectometry Method: Advances in Monitoring In Situ Soil Bulk Density. Methods Soil Anal. 2017, 2, 2. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Hu, J.; Wang, L. Research progress of oil pollution on soil based on bibliometric analysis. Front. Soc. Sci. Tech. 2019, 1. [Google Scholar] [CrossRef]
- Li, C.; Ji, X.; Luo, X. Phytoremediation of Heavy Metal Pollution: A Bibliometric and Scientometric Analysis from 1989 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 4755. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.-Q.; Perumal, V.; Jiang, X.-X.; Liu, Z.-Y.; Xue, S.-G. Bibliometric analysis of research on soil arsenic during 2005–2016. J. Central South Univ. 2019, 26, 479–488. [Google Scholar] [CrossRef]
- Sivasami, K. Research performance on soil pollution: A bibliometric analysis. Int. J. Adv. Res. Dev. 2018, 3, 1141–1146. [Google Scholar]
- Hu., Y.; Han, J.; Sun, Z.; Wang, H.; Liu, X.; Kong, H. A bibliometric analysis of Soil remediation Based on Massive research literature data During 1988–2018. BioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Mao, G.; Shi, T.; Zhang, S.; Crittenden, J.; Guo, S.; Du, H. Bibliometric analysis of insights into soil remediation. J. Soils Sediments 2018, 18, 2520–2534. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, K.; Zhao, R. Bibliometric analysis of research on soil health from 1999 to 2018. J. Soils Sediments 2019, 20, 1513–1525. [Google Scholar] [CrossRef]
- VOSviewer. Available online: https://www.vosviewer.com (accessed on 12 May 2020).
- Garfield, E.; Paris, S.W.; Stock, W.G. Histcite™: A software tool for informetric analysis of citation linkage. Infor. Wiss. Prax. 2006, 57, 391. [Google Scholar]
- HistCite: No Longer in Active Development or Officially Supported. Available online: https://support.clarivate.com/ScientificandAcademicResearch/s/article/HistCite-No-longer-in-active-development-or-officially-supported?language=en_US (accessed on 12 May 2020).
- HistCitePro. Available online: https://zhuanlan.zhihu.com/p/20902898 (accessed on 12 May 2020).
- Bristow, K.; White, R.D.; Kluitenberg, G. Comparison of single and dual probes for measuring soil thermal properties with transient heating. Soil Res. 1994, 32, 447–464. [Google Scholar] [CrossRef]
- Bristow, K.L.; Bilskie, J.R.; Kluitenberg, G.J.; Horton, R. Comparison of Techniques for Extracting Soil Thermal Properties from Dual-Probe Heat-Pulse Data. Soil Sci. 1995, 160, 1–7. [Google Scholar] [CrossRef]
- Smits, K.M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T.H. Determination of the thermal conductivity of sands under varying moisture, drainage/wetting, and porosity conditions- applications in near-surface soil moisture distribution analysis. Hydrol. Days 2009, 57–65. [Google Scholar]
- Smits, K.M.; Sakaki, T.; Limsuwat, A.; Illangasekare, T.H. Thermal Conductivity of Sands under Varying Moisture and Porosity in Drainage–Wetting Cycles. Vadose Zone J. 2010, 9, 172. [Google Scholar] [CrossRef]
- Wallen, B.M.; Smits, K.M.; Sakaki, T.; Howington, S.E.; Deepagoda, T.C. Thermal Conductivity of Binary Sand Mixtures Evaluated through Full Water Content Range. Soil Sci. Soc. Am. J. 2016, 80, 592–603. [Google Scholar] [CrossRef]
- Ren, T.; Kluitenberg, G.J.; Horton, R. Determining Soil Water Flux and Pore Water Velocity by a Heat Pulse Technique. Soil Sci. Soc. Am. J. 2000, 64, 552–560. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Horton, R.; Kluitenberg, G.J.; Wang, Q. Evaluation of the Heat Pulse Ratio Method for Measuring Soil Water Flux. Soil Sci. Soc. Am. J. 2005, 69, 757–765. [Google Scholar] [CrossRef]
- Singh, D.N.; Kuriyan, S.J.; Manthena, K.C. A generalised relationship between soil electrical and thermal resistivities. Exp. Therm. Fluid Sci. 2001, 25, 175–181. [Google Scholar] [CrossRef]
- Singh, D.N.; Devid, K. Generalized relationships for estimating soil thermal resistivity. Exp. Therm. Fluid Sci. 2000, 22, 133–143. [Google Scholar] [CrossRef]
- Singh, D.; Rao, M. Laboratory measurement of soil thermal resistivity. Geotech. Eng. Bull. 1998, 7, 179–189. [Google Scholar]
- Smits, K.M.; Sakaki, T.; Howington, S.; Peters, J.F.; Illangasekare, T.H. Temperature Dependence of Thermal Properties of Sands across a Wide Range of Temperatures (30–70 °C). Vadose Zone J. 2013, 12, 30–70. [Google Scholar] [CrossRef]
- Noborio, K.; Horton, R.; Tan, C.S. Time Domain Reflectometry Probe for Simultaneous Measurement of Soil Matric Potential and Water Content. Soil Sci. Soc. Am. J. 1999, 63, 1500–1505. [Google Scholar] [CrossRef]
- Sheng, W.; Rumana, K.; Sakai, M.; Silfa, F.; Jones, S.B. A Multi-Functional Penta-Needle Thermo-Dielectric Sensor for Porous Media Sensing. IEEE Sens. J. 2016, 16, 3670–3678. [Google Scholar] [CrossRef]
- Reece, C.F. Evaluation of a Line Heat Dissipation Sensor for Measuring Soil Matric Potential. Soil Sci. Soc. Am. J. 1996, 60, 1022–1028. [Google Scholar] [CrossRef]
- Dong, J.; Agliata, R.; Steele-Dunne, S.C.; Hoes, O.; Bogaard, T.A.; Greco, R.; Van De Giesen, N. The Impacts of Heating Strategy on Soil Moisture Estimation Using Actively Heated Fiber Optics. Sensors 2017, 17, 2102. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Steele-Dunne, S.C.; Ochsner, T.E.; Van De Giesen, N. Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures. Water Resour. Res. 2016, 52, 4280–4300. [Google Scholar] [CrossRef] [Green Version]
- Van De Giesen, N.; Steele-Dunne, S.C.; Jansen, J.; Hoes, O.; Hausner, M.B.; Tyler, S.; Selker, J.S. Double-Ended Calibration of Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors 2012, 12, 5471–5485. [Google Scholar] [CrossRef] [Green Version]
- Kluitenberg, G.J.; Ham, J.M.; Bristow, K.L. Error Analysis of the Heat Pulse Method for Measuring Soil Volumetric Heat Capacity. Soil Sci. Soc. Am. J. 1993, 57, 1444–1451. [Google Scholar] [CrossRef]
- Bristow, K.L.; Kluitenberg, G.J.; Horton, R. Measurement of Soil Thermal Properties with a Dual-Probe Heat-Pulse Technique. Soil Sci. Soc. Am. J. 1994, 58, 1288–1294. [Google Scholar] [CrossRef]
- Tarara, J.M.; Ham, J.M. Measuring Soil Water Content in the Laboratory and Field with Dual-Probe Heat-Capacity Sensors. Agron. J. 1907, 89, 535–542. [Google Scholar] [CrossRef]
- Ren, T.; Noborio, K.; Horton, R. Measuring Soil Water Content, Electrical Conductivity, and Thermal Properties with a Thermo-Time Domain Reflectometry Probe. Soil Sci. Soc. Am. J. 1999, 63, 450–457. [Google Scholar] [CrossRef]
- Ren, T.; Ochsner, T.E.; Horton, R.; Ju, Z. Heat-Pulse Method for Soil Water Content Measurement. Soil Sci. Soc. Am. J. 2003, 67, 1631–1634. [Google Scholar] [CrossRef]
- Heitman, J.L.; Basinger, J.M.; Kluitenberg, G.J.; Ham, J.M.; Frank, J.M.; Barnes, P.L. Field evaluation of the dual-probe heat-pulse method for measuring soil water content. Vadose Zone J. 2003, 2, 552–560. [Google Scholar] [CrossRef]
- Heitman, J.L.; Horton, R.; Sauer, T.J.; DeSutter, T.M. Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics. J. Hydrometeorol. 2008, 9, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Ochsner, T.E.; Horton, R.; Ren, T. A New Perspective on Soil Thermal Properties. Soil Sci. Soc. Am. J. 2001, 65, 1641–1647. [Google Scholar] [CrossRef]
- Lu, S.; Ren, T.; Gong, Y.; Horton, R. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Sci. Soc. Am. J. 2007, 71, 8–14. [Google Scholar] [CrossRef]
- Simunek, J.; Van Genuchten, M.T.; Van Genuchten, M. Estimating Unsaturated Soil Hydraulic Properties from Tension Disc Infiltrometer Data by Numerical Inversion. Water Resour. Res. 1996, 32, 2683–2696. [Google Scholar] [CrossRef]
- Bastiaanssen, W.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.; Roerink, G.; Van Der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL). J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Čermák, J.; Kučera, J.; Nadezhdina, N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 2004, 18, 529–546. [Google Scholar] [CrossRef]
- Chaudhary, D.; Gori, F.; Grazzini, G. Further Experimental Measurements of Effective Thermal Conductivity of Porous Media by a Thermal Probe, Colloquium on Energy Flux at the Soil Atmosphere Interface; ICTP: Trieste, Italy, 1985; pp. 6–10. [Google Scholar]
- Ewen, J.; Thomas, H.R. The thermal probe—a new method and its use on an unsaturated sand. Géotechnique 1987, 37, 91–105. [Google Scholar] [CrossRef]
- Ewen, J.; Thomas, H.R. Heating unsaturated medium sand. Géotechnique 1989, 39, 455–470. [Google Scholar] [CrossRef]
- Papadakis, G.; Giaglaras, P.; Kyritsis, S. A numerical method for determining thermal conductivity of porous media from in-situ measurements using a cylindrical heat source. J. Agric. Eng. Res. 1990, 45, 281–293. [Google Scholar] [CrossRef]
- De Vries, D.A. The Thermal Conductivity of Soil; Mededelingen van der Landbouwhogeschool te Wageningen: Wageningen, The Netherlands, 1952; pp. 1–73. [Google Scholar]
- Van Duin, R.; De Vries, D. A recording apparatus for measuring thermal conductivity, and some results obtained with it in soil. Neth. J. Agric. Sci. 1954, 2, 168–175. [Google Scholar] [CrossRef]
- De Vries, D.A. Thermal Conductivity of Soil. Nature 1956, 178, 1074. [Google Scholar] [CrossRef]
- De Vries, D.A. Thermal properties of soil. In Physics of Plant Environment; van Dijk, W.R., Ed.; North Holland Publishing: Amsterdam, The Netherlands, 1963; pp. 210–235. [Google Scholar]
- Kluitenberg, G.J.; Bristow, K.L.; Das, B.S. Error Analysis of Heat Pulse Method for Measuring Soil Heat Capacity, Diffusivity, and Conductivity. Soil Sci. Soc. Am. J. 1995, 59, 719–726. [Google Scholar] [CrossRef]
- Noborio, K.; McInnes, K.J.; Heilman, J. Measurements of Soil Water Content, Heat Capacity, and Thermal Conductivity with a Single Tdr Probe1. Soil Sci. 1996, 161, 22–28. [Google Scholar] [CrossRef]
- Welch, S.M.; Kluitenberg, G.J.; Bristow, K.L. Rapid numerical estimation of soil thermal properties for a broad class of heat-pulse emitter geometries. Meas. Sci. Technol. 1996, 7, 932–938. [Google Scholar] [CrossRef]
- Bristow, K.L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agric. For. Meteorol. 1998, 89, 75–84. [Google Scholar] [CrossRef]
- Bristow, K.L.; Kluitenberg, G.J.; Goding, C.J.; Fitzgerald, T.S. A small multi-needle probe for measuring soil thermal properties, water content and electrical conductivity. Comput. Electron. Agric. 2001, 31, 265–280. [Google Scholar] [CrossRef]
- Basinger, J.M.; Barnes, P.L.; Kirkham, M.B.; Frank, J.M.; Kluitenberg, G.J.; Ham, J.M. Laboratory evaluation of the dual-probe heat-pulse method for measuring soil water content. Vadose Zone J. 2003, 2, 389–399. [Google Scholar] [CrossRef]
- Mori, Y.; Hopmans, J.W.; Mortensen, A.P.; Kluitenberg, G.J. Multi-functional heat pulse probe for the simultaneous measurement of soil water content, solute concentration, and heat transport parameters. Vadose Zone J. 2003, 2, 561–571. [Google Scholar] [CrossRef]
- Ochsner, T.E.; Horton, R.; Ren, T. Use of the dual-probe heat-pulse technique to monitor soil water content in the vadose zone. Vadose Zone J. 2003, 2, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Knight, J.H.; Kluitenberg, G.J. Simplified computational approach for dual-probe heat-pulse method. Soil Sci. Soc. Am. J. 2004, 68, 447–449. [Google Scholar] [CrossRef]
- Ham, J.M.; Benson, E.J. On the Construction and Calibration of Dual-Probe Heat Capacity Sensors. Soil Sci. Soc. Am. J. 2004, 68, 1185–1190. [Google Scholar] [CrossRef]
- Robinson, D.; Campbell, C.S.; Whopmans, J.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.L.; Selker, J.S.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Horton, R.; Sauer, T.J.; Heitman, J.L.; Ren, T. Cumulative Soil Water Evaporation as a Function of Depth and Time. Vadose Zone J. 2011, 10, 1016–1022. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.; Lu, Y.; Xie, X.; Ren, T.; Horton, R. An Improved Thermo-TDR Technique for Monitoring Soil Thermal Properties, Water Content, Bulk Density, and Porosity. Vadose Zone J. 2019, 18, 1–9. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Dyck, M.; Wang, J.; Lv, J.W.J. Evaluation of TDR for Quantifying Heat-Pulse-Method-Induced Ice Melting in Frozen Soils. Soil Sci. Soc. Am. J. 2015, 79, 1275–1288. [Google Scholar] [CrossRef]
- Kojima, Y.; Nakano, Y.; Kato, C.; Noborio, K.; Kamiya, K.; Horton, R. A new thermo-time domain reflectometry approach to quantify soil ice content at temperatures near the freezing point. Cold Reg. Sci. Technol. 2020, 174, 103060. [Google Scholar] [CrossRef]
- Kojima, Y.; Heitman, J.; Noborio, K.; Ren, T.; Horton, R. Sensitivity analysis of temperature changes for determining thermal properties of partially frozen soil with a dual probe heat pulse sensor. Cold Reg. Sci. Technol. 2018, 151, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Kojima, Y.; Heitman, J.L.; Flerchinger, G.N.; Ren, T.; Horton, R. Sensible Heat Balance Estimates of Transient Soil Ice Contents. Vadose Zone J. 2016, 15, 15. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Ren, T.; Kojima, Y.; Lu, Y.; Horton, R.; Heitman, J.L. An improved thermo-time domain reflectometry method for determination of ice contents in partially frozen soils. J. Hydrol. 2017, 555, 786–796. [Google Scholar] [CrossRef]
- Tian, Z.; Heitman, J.; Horton, R.; Ren, T. Determining Soil Ice Contents during Freezing and Thawing with Thermo-Time Domain Reflectometry. Vadose Zone J. 2015, 14, 14. [Google Scholar] [CrossRef]
- Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.; Sauer, T.; Ben-Gal, A. A review of approaches for evapotranspiration partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [Google Scholar] [CrossRef]
- Ren, R.; Von Der Crone, J.; Horton, R.; Liu, G.; Steppe, K. An improved single probe method for sap flow measurements using finite heating duration. Agric. For. Meteorol. 2020, 280, 107788. [Google Scholar] [CrossRef]
- Lu, Y.; Horton, R.; Zhang, X.; Ren, T. Accounting for soil porosity improves a thermal inertia model for estimating surface soil water content. Remote. Sens. Environ. 2018, 212, 79–89. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, Y.; Kojima, Y.; Lu, S.; Zhang, M.; Chen, Y.; Horton, R. Tangent Line/Second-Order Bounded Mean Oscillation Waveform Analysis for Short TDR Probe. Vadose Zone J. 2016, 15, 15. [Google Scholar] [CrossRef]
- Bittelli, M.; Flury, M.; Roth, K. Use of dielectric spectroscopy to estimate ice content in frozen porous media. Water Resour. Res. 2004, 40. [Google Scholar] [CrossRef] [Green Version]
- Ghuman, B.S.; Lal, R. Thermal Conductivity, Thermal Diffusivity, and Thermal Capacity of Some Nigerian Soils. Soil Sci. 1985, 139, 74–80. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.; Reeder, R.C. Soil Thermal Conductivity Effects of Density, Moisture, Salt Concentration, and Organic Matter. Soil Sci. Soc. Am. J. 2000, 64, 1285–1290. [Google Scholar] [CrossRef]
- Campbell, G.S. Soil Physics with Basic: Transport Models for Soil-Plant Systems, 3rd ed.; Elsevier: New York, NY, USA, 1985; Volume 14. [Google Scholar]
- Chung, S.-O.; Horton, R. Soil heat and water flow with a partial surface mulch. Water Resour. Res. 1987, 23, 2175–2186. [Google Scholar] [CrossRef] [Green Version]
- Progelhof, R.C.; Throne, J.L.; Ruetsch, R.R. Methods for predicting the thermal conductivity of composite systems: A review. Polym. Eng. Sci. 1976, 16, 615–625. [Google Scholar] [CrossRef]
- Cheng, P.; Hsu, C.-T. The Effective Stagnant Thermal Conductivity of Porous Media with Periodic Structures. J. Porous Media 1999, 2, 19–38. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C.; Li, S. Improved Simulation of Frozen-Thawing Process in Land Surface Model (CLM4.5). J. Geophys. Res. Atmos. 2018, 123, 238–258. [Google Scholar] [CrossRef]
- Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.M.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. Regions of Strong Coupling Between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [Green Version]
- Ebel, B.A.; Koch, J.C.; Walvoord, M.A. Soil Physical, Hydraulic, and Thermal Properties in Interior Alaska, USA: Implications for Hydrologic Response to Thawing Permafrost Conditions. Water Resour. Res. 2019, 55, 4427–4447. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Wu, T.; Wang, Q.; Ding, Y.; Yao, J.; Wu, X.; Hu, G.; Xiao, Y.; Du, Y.; et al. Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai–Tibet Plateau. Agric. For. Meteorol. 2019, 264, 235–246. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agric. For. Meteorol. 2019, 265, 280–294. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.; McKenzie, J.M. Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth-Sci. Rev. 2014, 138, 313–334. [Google Scholar] [CrossRef]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, N.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Harris, C.; Arenson, L.U.; Christiansen, H.H.; Etzelmüller, B.; Frauenfelder, R.; Gruber, S.; Haeberli, W.; Hauck, C.; Hölzle, M.; Humlum, O.; et al. Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth-Sci. Rev. 2009, 92, 117–171. [Google Scholar] [CrossRef] [Green Version]
- Lafrenière, M.; Lamoureux, S.F. Effects of changing permafrost conditions on hydrological processes and fluvial fluxes. Earth-Sci. Rev. 2019, 191, 212–223. [Google Scholar] [CrossRef]
- Nemes, A.; Schaap, M.G.; Leij, F.J.; Wösten, J. Description of the unsaturated soil hydraulic database UNSODA version 2.0. J. Hydrol. 2001, 251, 151–162. [Google Scholar] [CrossRef]
- Nemes, A. Unsaturated Soil Hydraulic Database of Hungary: HUNSODA. Agrokém. Talajt. 2002, 51, 17–26. [Google Scholar] [CrossRef]
- Leij, F.J. The Unsoda Unsaturated Soil Hydraulic Database: User’s Manual; National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency: Cincinnati, OH, USA, 1996; Volume 96. [Google Scholar]
No. | Items | N | TLCS | TGCS/C | L | TLC |
---|---|---|---|---|---|---|
Top 10 authors | ||||||
1 | Horton, Robert (Iowa State University) | 69 | 928 | 2031 | 17 | 145 |
2 | Ren, Tusheng (China Agriculture University) | 43 | 365 | 825 | 13 | 95 |
3 | Heitman, Joshua L. (North Carolina State University) | 29 | - | 668 | 10 | 75 |
4 | Kluitenberg, Gerard J. (Kansas State University) | 29 | 835 | 1323 | 7 | 31 |
5 | Ochsner, Tyson E. (Oklahoma University) | 24 | - | 901 | 9 | 33 |
6 | Si, Bingcheng (University Saskatchewan) | 20 | - | 214 | 8 | 33 |
7 | Kustas, William P. (USDA-ARS) | 16 | 33 | 702 | 1 | 1 |
8 | Hopmans, Jan W. (University of California Davis) | 14 | 170 | 980 | 4 | 16 |
9 | Liu, Gang (China Agriculture University) | 14 | 88 | 138 | 6 | 31 |
10 | Sauer, Thomas J. (USDA-ARS) | 14 | 123 | 571 | 5 | 27 |
11 | Singh, Devendra Narain (Indian Institute of Technology) | 14 | 42 | 260 | 1 | 3 |
Top 10 organizations | ||||||
1 | USDA ARS (USA) | 87 | 334 | 2698 | 32 | 96 |
2 | China Agriculture University (China) | 77 | 449 | 1302 | 20 | 124 |
3 | Chinese Academy of Science (China) | 66 | 227 | 1089 | 28 | 88 |
4 | Iowa State University (USA) | 62 | 649 | 1642 | 18 | 114 |
5 | Kansas State University (USA) | 34 | 496 | 992 | 12 | 27 |
6 | University Saskatchewan (Canada) | 28 | 84 | 347 | 8 | 32 |
7 | University Arizona (USA) | 25 | 50 | 1120 | 19 | 27 |
8 | Northwest A&F University (China) | 23 | 46 | 255 | 13 | 46 |
9 | Delft University Technology (Netherland) | 21 | 31 | 417 | 8 | 18 |
10 | North Carolina State University (USA) | 21 | 149 | 666 | 11 | 49 |
Top 10 countries | ||||||
1 | USA | 475 | 2119 | 15,903 | 34 | 312 |
2 | China | 278 | 846 | 4099 | 24 | 202 |
3 | Canada | 112 | 176 | 2243 | 17 | 76 |
4 | Australia | 99 | 487 | 3334 | 20 | 70 |
5 | Germany | 84 | 106 | 2074 | 28 | 92 |
6 | France | 82 | 106 | 2543 | 23 | 70 |
7 | Italy | 78 | 100 | 1808 | 24 | 76 |
8 | UK | 64 | 30 | 1264 | 16 | 32 |
9 | Japan | 59 | 211 | 923 | 13 | 48 |
10 | Spain | 56 | 49 | 996 | 15 | 51 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Dyck, M.; Lv, J. The Heat Pulse Method for Soil Physical Measurements: A Bibliometric Analysis. Appl. Sci. 2020, 10, 6171. https://doi.org/10.3390/app10186171
He H, Dyck M, Lv J. The Heat Pulse Method for Soil Physical Measurements: A Bibliometric Analysis. Applied Sciences. 2020; 10(18):6171. https://doi.org/10.3390/app10186171
Chicago/Turabian StyleHe, Hailong, Miles Dyck, and Jialong Lv. 2020. "The Heat Pulse Method for Soil Physical Measurements: A Bibliometric Analysis" Applied Sciences 10, no. 18: 6171. https://doi.org/10.3390/app10186171
APA StyleHe, H., Dyck, M., & Lv, J. (2020). The Heat Pulse Method for Soil Physical Measurements: A Bibliometric Analysis. Applied Sciences, 10(18), 6171. https://doi.org/10.3390/app10186171