Deposition Efficacy of Natural and Synthetic Antioxidants on Fabrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Pine Tannin Isolation
2.3. Fabric Sample Treatments
2.4. Antioxidant Activity Test
2.5. Tannin Characterisation
3. Results and Discussion
3.1. Pine Tannin Isolation
3.2. Structural Aspects of Pine Tannin
3.3. Antioxidant Activity Test in Solution
3.4. Antioxidant Activity on Fabrics
3.5. Determination of Antioxidant Concentration Deposited on Fabric
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sahiner, N.; Sagbas, S.; Sahiner, M.; Silan, C.; Aktas, N.; Turk, M. Biocompatible and biodegradable poly(Tannic Acid) hydrogel with antimicrobial and antioxidant properties. Int. J. Biol. Macromol. 2016, 82, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Yesil-Celiktas, O.; Ganzera, M.; Akgun, I.; Sevimli, C.; Korkmaz, K.S.; Bedir, E. Determination of polyphenolic constituents and biological activities of bark extracts from different Pinus species. J. Sci. Food Agric. 2009, 89, 1339–1345. [Google Scholar] [CrossRef]
- Schäfer, A.; Chovanová, Z.; Muchová, J.; Sumegová, K.; Liptáková, A.; Ďuračková, Z.; Högger, P. Inhibition of COX-1 and COX-2 activity by plasma of human volunteers after ingestion of French maritime pine bark extract (Pycnogenol). Biomed. Pharmacother. 2006, 60, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Higdon, J.V.; Frei, B. Tea Catechins and Polyphenols: Health Effects, Metabolism, and Antioxidant Functions. Crit. Rev. Food Sci. Nutr. 2003, 43, 89–143. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Packer, L.; Rimbach, G.; Virgili, F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (pinus maritima) bark, pycnogenol. Free Radic. Biol. Med. 1999, 27, 704–724. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
- Shakyawar, D.B.; Raja, A.S.M.; Kumar, A.; Pareek, P.K. Antimoth finishing treatment for woollens using tannin containing natural dyes. Indian J. Fibre Text. Res. 2015, 40, 200–202. [Google Scholar]
- Ghaheh, F.S.; Nateri, A.S.; Mortazavi, S.M.; Abedi, D.; Mokhtari, J. The effect of mordant salts on antibacterial activity of wool fabric dyed with pomegranate and walnut shell extracts. Color. Technol. 2012, 128, 473–478. [Google Scholar] [CrossRef]
- Owis, A.S. An Economical Dyeing Process for Cotton, Polyester and Cotton/Polyester Blended Fabrics. J. Text. Appar. Technol. Manag. 2010, 6, 1–11. [Google Scholar]
- Mongkholrattanasit, R.; Kryštůfek, J.; Wiener, J.; Studničková, J. Properties of Wool and Cotton Fabrics Dyed with Eucalyptus, Tannin and Flavonoids. FIBRES Text. East. Eur. 2011, 19, 90–95. [Google Scholar]
- Yamuna, V.; Sudha, S. Antimicrobial activity of fabrics treated with Quercus Infectoria extract for foot odour control. Biotechnol. Indian J. 2013, 7, 231–235. [Google Scholar]
- Patel, B.H.; Tandel, M.G. Antimicrobial finish to cotton fabric by natural extracts. Man-Made Text. India 2015, 473–476. [Google Scholar]
- Shahidi, S.; Wiener, J. Antibacterial Agents in Textile Industry. In Antimicrobial Agents; Bobbarala, V., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0723-1. [Google Scholar]
- Chung, H.; Seok, H.J. Populations of malodor-forming bacteria and identification of volatile components in triolein-soiled cotton fabric. Fibers Polym. 2012, 13, 740–747. [Google Scholar] [CrossRef]
- Chi, Y.-S.; Kay Obendorf, S. Aging of oily soils on textiles. Chemical changes upon oxidation and interaction with textile fibers. J. Surfactants Deterg. 1998, 1, 371–380. [Google Scholar] [CrossRef]
- Chi, Y.-S.; Obendorf, S.K. Aging of oily soils on textile materials: A literature review. J. Surfactants Deterg. 1998, 1, 407–418. [Google Scholar] [CrossRef]
- Munk, S.; Münch, P.; Stahnke, L.; Adler-Nissen, J.; Schieberle, P. Primary odorants of laundry soiled with sweat/sebum: Influence of lipase on the odor profile. J. Surfactants Deterg. 2000, 3, 505–515. [Google Scholar] [CrossRef]
- Callewaert, C.; Maeseneire, E.D.; Kerckhof, F.-M.; Verliefde, A.; Wiele, T.V.d.; Boon, N. Microbial Odor Profile of Polyester and Cotton Clothes after a Fitness Session. Appl. Environ. Microbiol. 2014, 80, 6611–6619. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Jang, S.-J.; Kim, H.-R.; Kim, S.-B. Deodorizing, antimicrobial and glucosyltransferase inhibitory activities of polyphenolics from biosource. Korean J. Chem. Eng. 2017, 34, 1400–1404. [Google Scholar] [CrossRef]
- Kanlayavattanakul, M.; Lourith, N. Body malodours and their topical treatment agents. Int. J. Cosmet. Sci. 2011, 33, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Lodhia, P.; Yaegaki, K.; Khakbaznejad, A.; Imai, T.; Sato, T.; Tanaka, T.; Murata, T.; Kamoda, T. Effect of Green Tea on Volatile Sulfur Compounds in Mouth Air. J. Nutr. Sci. Vitaminol. (Tokyo) 2008, 54, 89–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchetti, G.O.; Celliers, J.M.; Crestini, C. Cleaning and/or treatment compositions. US20170088798A1, 2016. [Google Scholar]
- Furno, F.; Wattebled, L.; Ix-Mund, A.; Schmidt, H.; Henn, M.; Harren, J. Superabsorbent composition with tannins for odor control. US8658146B2, 2014. [Google Scholar]
- Schür, J. Method for Neutralising Odours in the Air in a Non-Toxic Manner. WO/2002/055114, 2002. [Google Scholar]
- Srisod, S.; Motina, K.; Inprasit, T.; Pisitsak, P. A green and facile approach to durable antimicrobial coating of cotton with silver nanoparticles, whey protein, and natural tannin. Prog. Org. Coat. 2018, 120, 123–131. [Google Scholar] [CrossRef]
- Shahid, M.; Shahid-ul-Islam; Mohammad, F. Recent advancements in natural dye applications: A review. J. Clean. Prod. 2013, 53, 310–331. [Google Scholar] [CrossRef]
- Varesano, A.; Vineis, C.; Aluigi, A.; Rombaldoni, F. Antimicrobial polymers for textile products. In Science against microbial pathogens: communicating current research and technological advances; Formatex Research Center: Badajoz, Spain, 2011; Vol. 3, pp. 99–110. [Google Scholar]
- Pizzi, A. Tannins: Major Sources, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; Elsevier: Amsterdam, The Netherlands, 2008; pp. 179–199. ISBN 978-0-08-045316-3. [Google Scholar]
- Cefali, L.C.; Ataide, J.A.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Plant-based active photoprotectants for sunscreens. Int. J. Cosmet. Sci. 2016, 38, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Serpen, A.; Capuano, E.; Fogliano, V.; Gökmen, V. A new procedure to measure the antioxidant activity of insoluble food components. J. Agric. Food Chem. 2007, 55, 7676–7681. [Google Scholar] [CrossRef]
- Melone, F.; Saladino, R.; Crestini, C. Tannin Structural Elucidation and Quantitative 31P NMR Analysis. 1. Model Compounds. J. Agric. Food Chem. 2013, 61, 9307–9315. [Google Scholar] [CrossRef] [Green Version]
- Melone, F.; Saladino, R.; Crestini, C. Tannin Structural Elucidation and Quantitative 31P NMR Analysis. 2. Hydrolyzable Tannins and Proanthocyanidins. J. Agric. Food Chem. 2013, 61, 9316–9324. [Google Scholar] [CrossRef]
- Granata, A.; Argyropoulos, D.S. 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a Reagent for the Accurate Determination of the Uncondensed and Condensed Phenolic Moieties in Lignins. J. Agric. Food Chem. 1995, 43, 1538–1544. [Google Scholar] [CrossRef]
- Meng, X.; Crestini, C.; Ben, H.; Hao, N.; Pu, Y.; Ragauskas, A.J.; Argyropoulos, D.S. Determination of hydroxyl groups in biorefinery resources via quantitative 31P NMR spectroscopy. Nat. Protoc. 2019, 14, 2627–2647. [Google Scholar] [CrossRef] [PubMed]
- Asikkala, J.; Tamminen, T.; Argyropoulos, D.S. Accurate and Reproducible Determination of Lignin Molar Mass by Acetobromination. J. Agric. Food Chem. 2012, 60, 8968–8973. [Google Scholar] [CrossRef] [PubMed]
- Lange, H.; Rulli, F.; Crestini, C. Gel Permeation Chromatography in Determining Molecular Weights of Lignins: Critical Aspects Revisited for Improved Utility in the Development of Novel Materials. ACS Sustain. Chem. Eng. 2016, 4, 5167–5180. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Strumeyer, D.H.; Malin, M.J. Condensed tannins in grain sorghum. Isolation, fractionation, and characterization. J. Agric. Food Chem. 1975, 23, 909–914. [Google Scholar] [CrossRef]
- Gambacorta, A.; Tofani, D.; Bernini, R.; Migliorini, A. High-Yielding Preparation of a Stable Precursor of Hydroxytyrosol by Total Synthesis and from the Natural Glycoside Oleuropein. J. Agric. Food Chem. 2007, 55, 3386–3391. [Google Scholar] [CrossRef]
- Vieira, M.C.; Lelis, R.C.C.; Silva, B.C.d.; Oliveira, G. de L. Tannin Extraction from the Bark of Pinus oocarpa var. oocarpa with Sodium Carbonate and Sodium Bisulfite. Floresta E Ambiente 2011, 18, 1–8. [Google Scholar] [CrossRef]
- De la Luz Cádiz-Gurrea, M.; Fernández-Arroyo, S.; Segura-Carretero, A. Pine Bark and Green Tea Concentrated Extracts: Antioxidant Activity and Comprehensive Characterization of Bioactive Compounds by HPLC–ESI-QTOF-MS. Int. J. Mol. Sci. 2014, 15, 20382–20402. [Google Scholar] [CrossRef]
- Weber, H.A.; Hodges, A.E.; Guthrie, J.R.; O’Brien, B.M.; Robaugh, D.; Clark, A.P.; Harris, R.K.; Algaier, J.W.; Smith, C.S. Comparison of Proanthocyanidins in Commercial Antioxidants: Grape Seed and Pine Bark Extracts. J. Agric. Food Chem. 2007, 55, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Bahorun, T.; Luximon-Ramma, A.; Crozier, A.; Aruoma, O.I. Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. J. Sci. Food Agric. 2004, 84, 1553–1561. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
- Arnous, A.; Makris, D.P.; Kefalas, P. Correlation of Pigment and Flavanol Content with Antioxidant Properties in Selected Aged Regional Wines from Greece. J. Food Compos. Anal. 2002, 15, 655–665. [Google Scholar] [CrossRef]
- Luximon-Ramma, A.; Bahorun, T.; Soobrattee, M.A.; Aruoma, O.I. Antioxidant Activities of Phenolic, Proanthocyanidin, and Flavonoid Components in Extracts of Cassia fistula. J. Agric. Food Chem. 2002, 50, 5042–5047. [Google Scholar] [CrossRef] [PubMed]
- Alonso, Á.M.; Guillén, D.A.; Barroso, C.G.; Puertas, B.; García, A. Determination of Antioxidant Activity of Wine Byproducts and Its Correlation with Polyphenolic Content. J. Agric. Food Chem. 2002, 50, 5832–5836. [Google Scholar] [CrossRef] [PubMed]
- Rigo, A.; Vianello, F.; Clementi, G.; Rossetto, M.; Scarpa, M.; Vrhovšek, U.; Mattivi, F. Contribution of Proanthocyanidins to the Peroxy Radical Scavenging Capacity of Some Italian Red Wines. J. Agric. Food Chem. 2000, 48, 1996–2002. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total Antioxidant Capacity of Plant Foods, Beverages and Oils Consumed in Italy Assessed by Three Different In Vitro Assays. J. Nutr. 2003, 133, 2812–2819. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, J.M.R.; Darmon, N.; Fernandez, Y.; Mitjavila, S. Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J. Agric. Food Chem. 1991, 39, 1549–1552. [Google Scholar] [CrossRef]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Szabo, M.R.; Idiţoiu, C.; Chambre, D.; Lupea, A.X. Improved DPPH determination for antioxidant activity spectrophotometric assay. Chem. Pap. 2007, 61, 214–216. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Arranz, S.; Tabernero, M.; Díaz- Rubio, M.E.; Serrano, J.; Goñi, I.; Saura-Calixto, F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 2008, 41, 274–285. [Google Scholar] [CrossRef]
- Nugroho Prasetyo, E.; Kudanga, T.; Steiner, W.; Murkovic, M.; Nyanhongo, G.S.; Guebitz, G.M. Antioxidant activity assay based on laccase-generated radicals. Anal. Bioanal. Chem. 2008, 393, 679. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yang, X.; Xu, M.; Sun, G. Preparation of mud-coated silk fabrics with antioxidant and antibacterial properties. Mater. Lett. 2017, 10–13. [Google Scholar] [CrossRef]
- Koh, E.; Hong, K.H. Gallnut extract-treated wool and cotton for developing green functional textiles. Dyes Pigments 2014, 222–227. [Google Scholar] [CrossRef]
- Zemljič, L.F.; Peršin, Z.; Šauperl, O.; Rudolf, A.; Kostić, M. Medical textiles based on viscose rayon fabrics coated with chitosan-encapsulated iodine: antibacterial and antioxidant properties. Text. Res. J. 2018, 88, 2519–2531. [Google Scholar] [CrossRef]
- Zemljič, L.F.; Volmajer, J.; Ristić, T.; Bracic, M.; Sauperl, O.; Kreže, T. Antimicrobial and antioxidant functionalization of viscose fabric using chitosan–curcumin formulations. Text. Res. J. 2014, 84, 819–830. [Google Scholar] [CrossRef]
- Hong, K.H.; Bae, J.H.; Jin, S.R.; Yang, J.S. Preparation and properties of multi-functionalized cotton fabrics treated by extracts of gromwell and gallnut. Cellulose 2012, 19, 507–515. [Google Scholar] [CrossRef]
- Hong, K.H. Preparation and properties of phenolic compound/BTCA treated cotton fabrics for functional textile applications. Cellulose 2015, 22, 2129–2136. [Google Scholar] [CrossRef]
- Shalaby, E.A.; Shanab, S.M.M. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Mar. Sci. 2013, 42, 556–564. [Google Scholar]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yehye, W.A.; Rahman, N.A.; Ariffin, A.; Abd Hamid, S.B.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 2015, 101, 295–312. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.-J.; Tsai, F.-J.; Chen, C.-Y.; Yang, T.C.-C.; Lee, M.-R. Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography–mass spectrometry. Anal. Chim. Acta 2010, 668, 188–194. [Google Scholar] [CrossRef] [PubMed]
Entry | Pine Tannin | Extraction | Mn [Da] [a] | Total Phenolic Content [mg GAE/mg PT] [b] | Proanthocyanidin Content [mg CyE/g] [c] |
---|---|---|---|---|---|
1 | PST-sW1 | water/2%NaHSO3 | 500 | 0.15 | 22 |
2 | PTT-AW1 | acetone/water | 530 | 0.23 | 43 |
OH-Group/Motif | Integration Range [ppm] | Av. Abundance [mmol g−1] | |
---|---|---|---|
PTT-sW1 [a] | PTT-AW1 | ||
aliphatic | 145.94–145.25 | 3.11 ± 0.5 | 2.22 ± 0.2 |
ortho-disubstututed OH | 142.46–141.06 | 0.56 ± 0.5 | 0.77 ± 0.2 |
gallo/epigallocatechin | 142.46–141.87 | 1.22 ± 0.5 | 0.39 ± 0.2 |
gallate | 141.47–141.05 | 0.01 ± 0.5 | 0.12 ± 0.2 |
ortho-substituted OH | 140.60–137.60 | 1.00 ± 0.5 | 1.66 ± 0.2 |
catechol | 140.20–138.30 | 0.89 ± 0.5 | 0.72 ± 0.2 |
non-catechols | 138.80–137.60 | 0.44 ± 0.5 | 0.91 ± 0.2 |
ortho-unsubstituted OH | 137.60–137.40 | 0.11 ± 0.5 | 0.79 ± 0.2 |
acidic | 135.50–134.00 | 0.44 ± 0.5 | 0.82 ± 0.2 |
Entry | Pine Tannin | Extraction | Anti-Ox Activity [mg AAE per Mg Pine Tannin] [a] |
---|---|---|---|
1 | PST-sW1 | water/2%NaHSO3 | 0.30, 0.40 [b], 0.40 [c] |
2 | PTT-AW1 | acetone/water | 0.05, 0.11 [b], 0.05 [d] |
3 | BHT | --- | 0.14 [b] |
4 | octadecyl 3-(3,5-di-tert-butyl- 4-hydroxyphenyl)propionate | --- | 0.03 [b] |
5 | MtBHPP | --- | 0.01 [b] |
Entry | Fabric Sample [10 mg] | Treatment Conditions | Anti-ox Activity [μg AAE per Fabric Portion] [a] |
---|---|---|---|
1 | PST-sW1_cotton | H2O_mechanical | 0.37 ± 0.22 |
2 | PST-sW1_cotton | HDL mechanical | 0.16 ± 0.11 |
3 | PTT-AW1_cotton | H2O_mechanical | 0.48 ± 0.22 |
4 | PTT-AW1_cotton | HDL mechanical | 0.41 ± 0.23 |
5 | PST-sW1_cotton | H2O | 0.42 ± 0.11 |
6 | BHT_cotton | H2O_mechanical | 0.18± 0.22 |
7 | BHT_cotton | H2O_ | 0.20± 0.22 |
8 | MtBHPP_cotton | H2O_mechanical | 0.24± 0.22 |
9 | MtBHPP_cotton | H2O_ | 0.27± 0.22 |
10 | cotton | H2O mechanical | 0.00 ± 0.10 |
11 | cotton | HDL_mechanical | 0.00 ± 0.10 |
12 | cotton | H2O | 0.00 ± 0.10 |
Entry | Fabric | Sample (10 mg) | Amount of Pine Tannin Deposited on 10.0 mg Fabric [μg] | Amount of Pine Tannin Deposited on 10.0 mg Fabric [Mean Value ± sd in μg] |
---|---|---|---|---|
1 | PST-sW1_cotton_ H2O mechanical | 1 | 0.25 | 0.24 ± 0.20 |
2 | PST-sW1_cotton_ H2O mechanical | 2 | 0.26 | |
3 | PST-sW1_cotton_ H2O mechanical | 3 | 0.49 | |
4 | PST-sW1_cotton_ H2O mechanical | 4 | 0.13 | |
5 | PST-sW1_cotton_ H2O mechanical | 5 | 0.09 | |
6 | PST-sW1_cotton_ HDL_mechanical | 1 | 0.25 | 0.23 ± 0.02 |
7 | PST-sW1_cotton_ HDL_mechanical | 2 | 0.21 | |
8 | BHT cotton_ H2O | 1 | 0.27 | 0.20 ± 0.07 |
9 | BHT cotton_ H2O | 2 | 0.17 | |
10 | BHT cotton_ H2O | 3 | 0.22 | |
11 | BHT cotton_ H2O | 4 | 0.15 | |
12 | Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyl-phenyl)propanoate cotton_ H2O | 1 | 0.15 | 0.14 ± 0.01 |
13 | Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyl-phenyl)propanoate cotton_ H2O | 2 | 0.14 | |
14 | Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyl-phenyl)propanoate cotton_ H2O | 3 | 0.14 | |
15 | Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyl-phenyl)propanoate cotton_ H2O | 4 | 0.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannì, P.; Lange, H.; Bianchetti, G.; Joos, C.; Brogden, D.W.; Crestini, C. Deposition Efficacy of Natural and Synthetic Antioxidants on Fabrics. Appl. Sci. 2020, 10, 6213. https://doi.org/10.3390/app10186213
Giannì P, Lange H, Bianchetti G, Joos C, Brogden DW, Crestini C. Deposition Efficacy of Natural and Synthetic Antioxidants on Fabrics. Applied Sciences. 2020; 10(18):6213. https://doi.org/10.3390/app10186213
Chicago/Turabian StyleGiannì, Paola, Heiko Lange, Giulia Bianchetti, Conny Joos, David W. Brogden, and Claudia Crestini. 2020. "Deposition Efficacy of Natural and Synthetic Antioxidants on Fabrics" Applied Sciences 10, no. 18: 6213. https://doi.org/10.3390/app10186213
APA StyleGiannì, P., Lange, H., Bianchetti, G., Joos, C., Brogden, D. W., & Crestini, C. (2020). Deposition Efficacy of Natural and Synthetic Antioxidants on Fabrics. Applied Sciences, 10(18), 6213. https://doi.org/10.3390/app10186213