Sources, Bioavailability, and Safety of Silicon Derived from Foods and Other Sources Added for Nutritional Purposes in Food Supplements and Functional Foods
Abstract
:1. Introduction
1.1. Sources and Bioavailability of Silicon from Foods
1.2. Sources of Silicon of Mineral Origin Used in Functional Foods and Food Supplements
1.2.1. Silicic Acids and Their Stabilized Forms
1.2.2. EFSA Opinion on OSA-VC as a Novel Food Ingredient Used in Food Supplements
1.2.3. EFSA Opinion on MMST as a Novel Food Ingredient Used in Supplements
1.2.4. EFSA Opinion on the Safety and Bioavailability of Silicon from ch-OSA That Is Added for Nutritional Purposes in Food Supplements
1.2.5. Re-Evaluation of Silicon Dioxide (Silica, E551) as a Food Additive
1.3. Diatomaceous Earth as a Supplement
2. Conclusions
Author Contributions
Funding
Conflicts of Interest
Human and animal rights statement
References
- Farooq, M.A.; Dietz, K.J. Siliconas versatile playerin plantand human biology: Overlooked and poorly understood. Front. Plant Sci. 2015, 6, 994. [Google Scholar] [CrossRef] [Green Version]
- Hott, M.; Pollak, C.D.; Modrowski, D.; Marie, P.J. Short-term effects of organic silicon on trabecular bone in mature ovariectomised rats. Calcif. Tissue Int. 1993, 53, 174–179. [Google Scholar] [CrossRef]
- Prescha, A.; Zabłocka-Słowinska, K.; Grajeta, H. Dietary silicon and its impact on plasma silicon levels in the Polish population. Nutrients 2019, 11, 980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratcliffe, S.; Jugdaohsingh, R.; Vivancos, J.; Marron, A.; Deshmukh, R.; Ma, J.F.; Mitani-Ueno, N.; Robertson, J.; Wills, J.; Boekschoten, M.V.; et al. Identification of a mammalian silicon transporter. Am. J. Physiol. Cell Physiol. 2017, 312, 550–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, F.H. Update on the possible nutritional importance of silicon. J. Trace Elem. Med. Biol. 2014, 28, 379–382. [Google Scholar] [CrossRef] [PubMed]
- Reffitt, D.M.; Ogston, N.; Jugdaosingh, R.; Cheung, H.F.; Evans, B.A.; Thompson, R.P.H.; Powell, G.N. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 2003, 32, 127–135. [Google Scholar] [CrossRef]
- Macdonald, H.M.; Hardcastlea, A.C.; Jugdaohsingh, R.; Fraserc, W.D.; Reida, D.M.; Powell, J.J. Dietary silicon interacts with oestrogen to influence bone health: Evidence from the Aberdeen Prospective Osteoporosis Screening Study. Bone 2012, 50, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Arora, M.; Arora, E. The promise of silicon: Bone regeneration and increased bone density. J. Arthrosc. Jt. Surg. 2017, 4, 103–105. [Google Scholar] [CrossRef]
- Adler, A.J.; Etzion, Z.; Berlyne, G.M. Uptake, distribution, and excretion of 31 silicon in normal rats. Am. J. Physiol. 1986, 251, 670–673. [Google Scholar]
- Carlisle, E.M. Silicon. In Handbook of Nutritionally Essential Mineral Elements; O’Dell, B.L., Sunde, R.A., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1997; pp. 603–618. [Google Scholar]
- Carlisle, E.M. Silicon. In Biochemistry of the Essential Ultratrace Elements; Freiden, E., Ed.; Plenum Press: New York, NY, USA, 1984; Volume 3, pp. 257–291. [Google Scholar]
- EFSA (European Food Safety Authority). Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission related to the Tolerable Upper Intake Level of silicon. EFSA J. 2004, 60, 1–11. [Google Scholar]
- SCF (Scientific Committee for Food). Nutrient and energy intakes for the European Community. In Reports of the Scientific Committee for Food (Thirty-First Series); European Commission: Luxembourg, 1993. [Google Scholar]
- IOM (Institute of Medicine). Food and Nutrition Board. In Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Jurkić, L.M.; Cepanec, I.; Kraljević Pavelić, S.; Pavelić, K. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutr. Met. 2013, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EVM (Expert Group on Vitamins and Minerals). Silicon. In Safe Upper Levels for Vitamins and Minerals; Food Standards Agency: London, UK, 2003. [Google Scholar]
- Chen, F.; Cole, P.; Wen, L.; Mi, Z.; Trapido, E.J. Estimates of trace element intakes in Chinese farmers. J. Nutr. 1994, 124, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Anasuya, A.; Bapurao, S.; Paranjape, P.K. Fluoride and silicon intake in normal and endemic fluorotic areas. J. Trace Elem. Med. Biol. 1996, 10, 149–155. [Google Scholar] [CrossRef]
- Węglarzy, K.; Bereza, M. Biologiczne znaczenie krzemu oraz jego interakcje z innymi pierwiastkami. Wiad. Zootech. 2007, 4, 67–70. [Google Scholar]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Gröning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Atomic weights of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 2016, 88, 265–291. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Scientific Opinion of the Panel on Food Additives and Nutrient Sources added to Food. Calcium silicate and silicon dioxide/silicic acid gel added for nutritional purposes to food supplements. EFSA J. 2009, 1132, 1–24. [Google Scholar]
- Carlisle, E.M. Silicon as an essential trace element in animal nutrition. Ciba Found. Symp. 1986, 121, 123–139. [Google Scholar] [CrossRef]
- Royal Society of Chemistry. Silicon–Element Information, Properties and Uses. Available online: https://www.rsc.org/periodic-table/element/14/silicon (accessed on 3 August 2020).
- Ma, J.F.; Yamaji, N. Silicon uptake and accumulation in highe rplants. Trends Plant Sci. 2006, 11, 392–397. [Google Scholar] [CrossRef]
- Tripathi, D.; Dwivedi, M.M.; Tripathi, D.K.; Chauhan, D.K. Silicon bioavailability in exocarp of Cucumis sativus Linn. 3 Biotech 2017, 7, 386. [Google Scholar] [CrossRef] [Green Version]
- Jugdaohsingh, R. Silicon and bone health. J. Nutr. Health Aging 2007, 11, 99–110. [Google Scholar]
- Prescha, A.; Zabłocka, K.; Naduk, J.; Grajeta, H. Naturalne wody mineralne i źródlane oraz soki owocowe jako źródło krzemu w pożywieniu. Rocz. PZH 2011, 62, 289–293. [Google Scholar]
- Sripanyakorn, S.; Jugdaohsingh, R.; Elliott, H.; Walker, C.; Metha, P.; Shoukru, S.; Thompson, R.P.H.; Powel, J.J. The silicon content of beer and its bioavailability in healthy volunteers. Br. J. Nutr. 2004, 91, 403–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennington, J.A. Silicon in foods and diets. Food Addit. Contam. 1991, 8, 97–118. [Google Scholar] [CrossRef] [PubMed]
- Montesano, F.F.; D’Imperio, M.; Parente, A.; Cardinali, A.; Renna, M.; Serio, F. Green bean biofortification for Si through soilless cultivation: Plant response and Si bioaccessibility in pods. Sci. Rep. 2016, 6, 31662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNaughton, S.A.; Bolton-Smith, C.; Mishra, G.D.; Jugdaosingh, R.; Powell, J.J. Dietary silicon intake in post-menopausal women. Br. J. Nutr. 2005, 94, 813–817. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.J.; McNaughton, S.A.; Jugdaosingh, R.; Anderson, S.H.C.; Dear, J.; Khot, F.; Mowatt, L.; Gleason, K.L.; Sykes, M.; Thompson, R.P.H.; et al. A provisional database for the silicon content of foods in the United Kingdom. Br. J. Nutr. 2005, 94, 804–812. [Google Scholar] [CrossRef] [Green Version]
- Spripanyakorn, S.; Jugdaohsingh, R.; Richard, P.; Thompson, H.; Powell, J.J. Dietary silicon and bone health. Nutr. Bull. 2005, 30, 222–230. [Google Scholar] [CrossRef]
- Jugdaohsingh, R.; Anderson, S.H.C.; Tucker, K.L.; Elliott, H.; Kiel, D.P.; Thompson, R.P.H.; Powell, J.J. Dietary silicon intake and absorption. Am. J. Clin. Nutr. 2002, 75, 887–893. [Google Scholar] [CrossRef]
- Bellia, J.P.; Birchall, J.D.; Roberts, N.B. Beer: A dietary source of silicon. Lancet 1994, 343, 235. [Google Scholar] [CrossRef]
- Reffitt, D.M.; Jugdaohsingh, R.; Thompson, R.P.H.; Powell, J.J. Silicic acid: Its gastrointestinal uptake and urinary excretion in man and effects on aluminum excretion. J. Inorg. Biochem. 1999, 76, 141–147. [Google Scholar] [CrossRef]
- Vasanthi, N.; Lilly, M.S.; Raj, S.A. Silicon in Day Today Life. World Appl. Sci. J. 2012, 17, 1425–1440. [Google Scholar]
- © Cosmetic Ingredient Review. Safety Assessment of Equisetum Arvense-Derived Ingredients as Used in Cosmetics. Available online: https://www.cir-safety.org/sites/default/files/equise062020slr.pdf (accessed on 2 August 2020).
- EFSA (European Food Safety Authority). Choline-stabilised orthosilicic acid added for nutritional purposes to food supplements. EFSA J. 2009, 7. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Safety of organic silicon (monomethylsilanetriol, MMST) as a novel food ingredient for use as a source of silicon in food supplements and bioavailability of orthosilicic acid from the source. EFSA J. 2016, 14, 4436. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority). Safety of orthosilicic acid-vanillin complex (OSA-VC) as a novel food ingredient to be used in food supplements as a source of silicon and bioavailability of silicon from the source. EFSA J. 2018, 16, e05086. [Google Scholar] [CrossRef]
- Rahman, A. Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 1988; ISBN 978-0-444-42970-4. [Google Scholar]
- Sripanyakorn, S.; Jugdaohsingh, R.; Dissayabutr, W.; Anderson, S.H.; Thompson, R.P.; Powell, J.J. The comparative absorption of silicon from different foods and food supplements. Br. J. Nutr. 2009, 102, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.K.; Kim, M.H. Dietary silicon intake of Korean young adult males and its relation to their bone status. Biol. Trace Elem. Res. 2017, 176, 89–104. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Silicon. In Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1997; pp. 328–367. [Google Scholar] [CrossRef]
- Van Dyck, K.; Van Cauwenbergh, R.; Robberecht, H.; Deelstra, H. Bioavailability of silicon from food and food supplements. Fresenius J. Anal. Chem. 1999, 363, 541–544. [Google Scholar] [CrossRef]
- Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the Approximation of the Laws of the Member States Relating to Food Supplements. Official Journal of the European Communities; 12.7.2002, L 183/51-57; European Parliament: Brussels, Belgium, 2002.
- EFSA (European Food Safety Authority). Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J. 2018, 16, 50088. [Google Scholar] [CrossRef] [Green Version]
- Marcowycz, A.; Housez, B.; Maudet, C.; Cazaubiel, M.; Rinaldi, G.; Croizet, K. Digestive absorption of silicon, supplemented as orthosilicic acid-vanillin complex. Mol. Nutr. Food Res. 2015, 59, 1584–1589. [Google Scholar] [CrossRef]
- Popplewell, J.F.; King, S.J.; Day, J.P.; Ackrill, P.; Fifield, R.G.; Cresswell, M.L.; di Tada, M.L.; Liu, K. Kinetics of uptake and elimination of silicic acid by a human subject: A novel application of 32Si and accelerator mass spectrometry. J. Inorg. Biochem. 1998, 69, 177–180. [Google Scholar] [CrossRef]
- Pruksa, S.; Siripinyanond, A.; Powell, J.J.; Jugdaohsingh, R. A silicon balance study in human volunteers; a study to establish the variance in silicon excretion versus intake. Nutr. Metab. 2014, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacke, R.; Linoh, H. Bioorganosilicon chemistry. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; John Wiley and Sons Ltd.: Hoboken, NJ, USA, 1989; pp. 1143–1206. [Google Scholar]
- Sabourin, C.L.; Carpenter, J.C.; Leib, T.K.; Spivack, J.L. Biodegradation of dimethylsilianediol in soils. Appl. Environ. Microb. 1996, 62, 4352–4360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirner, A.V.; Flassbeck, D.; Gruemping, R. Organosilicon compounds in the environment. In Organometallic Compounds in the Environment; Craig, P.J., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2003; pp. 305–351. [Google Scholar]
- Graiver, D.; Farminer, K.W.; Narayan, R. A review of the fate and effects of silicones in the environment. J. Polym. Environ. 2003, 11, 129–136. [Google Scholar] [CrossRef]
- Varaprath, S.; McMahon, J.M.; Plotzke, K.P. Metabolites of hexamethyldisiloxane and decamethylcyclopentasiloxane in Fischer 344 rat urine—A comparison of a linear and cyclic siloxane. J. Polym. Environ. 2003, 31, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Jugdaohsingh, R.; Hui, M.; Anderson, S.H.C.; Kinrade, S.D.; Powell, J.J. The silicon supplement ‘Monomethylsilanetriol’ is safe and increases the body pool of silicon in healthy Pre-menopausal women. Nutr. Metab. Lond. 2013, 10, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanden Berghe, D.A. Expert Report: Analysis of Choline-stabilised Orthosilicic Acid with the Colorimetric Silicic Molybdate Method; Laboratory of Microbiology, Parasitology, Hygiene, University of Antwerp: Antwerp, Belgium, 2000. [Google Scholar]
- Calomme, R.; Cos, P.; D’Haese, P.C.; Vingerhoets, R.; Lamberts, L.V.; De Broe, M.E.; Van Hoorebeke, C.; Vanden Berghe, D.A. Absorption of silicon in healthy subjects. In Metal Ions in Biology and Medicine; Collery, P., Brätter, P., de Brätter, V.N., Khassanova, L., Etienne, J.C., Eds.; John Libbey Eurotext: Paris, France, 1998; Volume 5, pp. 228–232. [Google Scholar]
- Vanden Berghe, D.A. Expert Report: Bioequivalence of Two Galenic Forms of Cholinestabilised Orthosilisic Acid: Ch-OSA Liquid Versus ch-OSA Pellets; Laboratory of Microbiology, Parasitology, Hygiene, University of Antwerp: Antwerp, Belgium, 2001. [Google Scholar]
- Barel, A. Expert report: Anti-ageing Effect of Choline-stabilised (ortho)silicic Acid in Healthy Volunteers with Photo-damaged Skin; Free University of Brussels (VUB), Laboratory of General and Biological Chemistry: Brussels, Belgium, 2004. [Google Scholar]
- Spector, T. Expert Report: Assessment of Stabilised Orthosilicic Acid on Bone Turnover Inpatients with Osteopenia: Adverse Events; St. Thomas’ Hospital, Twin Research & Genetic Epidemiology Unit: London, UK, 2003. [Google Scholar]
- Takizawa, Y.; Hirasawa, F.; Noritomi, E.; Aida, M.; Tsunoda, H.; Uesugi, S. Oral ingestion of syloid to mice and rats and its chronic toxicity and carcinogenicity. Acta Med. Biol. 1988, 36, 27–56. [Google Scholar]
- Commission Regulation (EU) No 231/2012 of 9 March 2012 Laying Down Specifications for Food Additives Listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council Text with EEA Relevance; European Environment Agency: Copenhagen, Denmark, 2012.
- Fruijtier-Pölloth, C. The toxicological mode of action and the safety of synthetic amorphous silica—A nanostructured material. Review Article. Toxicology 2012, 294, 61–79. [Google Scholar] [CrossRef]
- Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on Food Additives (Text with EEA Relevance). Official Journal of the European Union, 31.12.2008, L 354/16-33; European Parliament: Copenhagen, Denmark, 2008.
- Degussa, A.G. Study Summary. Subchronic (13 Week) Oral Toxicity Study with SIPERNAT 22 in Rats; Degussa, A.G., Ed.; US-IT-No. 81-0016; European Food Safety Authority: Parma, Italy, 1981; unpublished report. [Google Scholar]
- Til, H.P.; Hollanders, V.M.H.; Beems, R.B. Sub-Chronic (13-Week) Oral Toxicity Study with Sipernat 22 in Rats; Degussa, H., Ed.; Civo Institutes TNO: Frankfurt, Germany, 1981; unpublished report, V 81.268/201741. [Google Scholar]
- Grace, GmbH. 6-Monate-Toxizit Rats Untersuchung Mit Syloid an Ratten Bei Oraler Applikation (Futteruntersuchung)—Part:1; Report Inbifo A0386 1103; European Food Safety Authority: Parma, Italy, 1975; Confidential Report—unpublished. [Google Scholar]
- Cabot, CAB-O-SIL. 90-day Dietary Feeding; Final Report dated 11th July 1958; European Food Safety Authority: Parma, Italy, 1958. [Google Scholar]
- Leuschner, F. Uber die chronische Toxizit€at von AEROSIL; Bericht vom 2; European Food Safety Authority: Parma, Italy, 1963; unpublished report. [Google Scholar]
- Newberne, P.M.; Wilson, R.B. Renal damage associated with silicon compounds in dogs. Proc. Natl. Acad. Sci. USA 1970, 65, 872–875. [Google Scholar] [CrossRef] [Green Version]
- Ikusika, O.O.; Mpendulo, C.T.; Zindove, T.J.; Okoh, A.I. Fossil shell flour in livestock production: A Review. Animals 2019, 9, 70. [Google Scholar] [CrossRef] [Green Version]
- Maciejewska, A. Krzemionka krystaliczna: Kwarc i krystobalit—Frakcja respirabilna. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego. Podst. Metod. Ocen. Środowiska Pr. 2014, 4, 67–128. [Google Scholar] [CrossRef] [Green Version]
- Bennett, D.C.; Yee, A.; Rhee, Y.J.; Cheng, K.M. Effect of diatomaceous earth on parasite load, egg production, and egg quality of free-range organic laying hens. Poult. Sci. 2011, 90, 1416–1426. [Google Scholar] [CrossRef] [PubMed]
- Koster, H. Diatomite in Animal Feeds. 2013. Available online: https://agrisilica.co.za/pdf/eng/Diatoms%20in%20Animal%20Feeds%20HH%20Koster.pdf (accessed on 20 June 2018).
- Wang, Z.Y.; Jang, Y.X.; Zhang, L.P. Structural Investigation of some important Chinese diatomites. Glass Phys. Chem. 2009, 35, 673–679. [Google Scholar] [CrossRef]
- Aw, M.S.; Bariana, M.; Yu, Y.; Addai-Mensah, J.; Losic, D. Surface-functionalized diatom microcapsules for drug delivery of water-insoluble drugs. J. Biomater. Appl. 2013, 28, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, O.A.; Sokunbi, O.A.; Ewuola, E.O. Performance Evaluation and Bone Characteristics of Growing Cockerel Fed Diets Containing Different Levels of Diatomaceous Earth. Middle East J. Sci. Res. 2009, 4, 36–39. [Google Scholar]
- Modirsanei, M.; Mansoori, B.; Khosravi, A.R.; Kiaei, M.M.; Khazraeinia, P.; Farkhoy, M.; Masoumi, Z. Effect of diatomaceous earth on the performance and blood variables of broiler chicks during experimental aflatoxicosis. Sci. Food Agric. 2008, 632, 626–632. [Google Scholar] [CrossRef]
Product Group | Silicon Content (mg/100 g or mg/100 mL) |
---|---|
Cereal and Related Products (Highest Concentration of Silicon in Grain Husk, Especially in Oat Bran) | |
Breakfast cereals | 7.79 |
Cornflakes | 2.42 |
Biscuits | 1.56 |
Other wheat cakes | 2.78 |
White rice | 1.24 |
Brown rice | 2.07 |
Pasta | 0.60 |
Bran | 10.17 |
Wheat bread | 1.69 |
Whole-grain bread | 2.25 |
Brown bread | 4.47 |
Croissant | 1.67 |
Fruit | |
Banana | 5.44 |
Orange | 0.32 |
Strawberries | 0.12 |
Mango | 2.00 |
Raisins | 8.25 |
Dried dates | 16.61 |
Nuts and seeds | 0.78 |
Vegetables | |
Carrots (peeled, raw) | 0.29 |
Potatoes (peeled, cooked) | 0.34 |
Iceberg lettuce | 0.41 |
Chickpeas | 0.76 |
Green beans (cooked) | 2.44 |
Drinks | |
Beer | 2.19 |
Wine | 1.24 |
Black tea | 0.86 |
Mineral water | 0.69 |
Product Group | Portion | Silicon Content (mg/100 g or mg/100 mL) |
---|---|---|
Cornflakes | 100 g | 2.42 |
High-bran cereal | 100 g | 10.17 |
Lady’s fingers | 2.78 g | 2.78 |
White rice | 200 g | 2.48 |
Brown rice | 200 g | 4.14 |
Pasta | 250 g | 1.50 |
Wheat bread | 200 g | 3.38 |
Whole-grain bread | 200 g | 8.94 |
Brown bread | 200 g | 4.50 |
Croissant | 100 g | 1.67 |
Fruit | ||
Peeled banana | 250 g | 13.60 |
Peeled orange | 210 g | 0.67 |
Strawberries | 200 g | 0.24 |
Vegetables | ||
Carrots (peeled, raw) | 200 g | 4.58 |
Potatoes (young, cooked) | 200 g | 0.58 |
Iceberg lettuce | 250 g | 1.03 |
Green beans (cooked) | 250 g | 6.10 |
Mineral water | 0.5 L | 3.44 |
Documents | Sources of Silicon Compounds | Opinion |
---|---|---|
Directive 2002/46/EC of the European Parliament and Council relating to Food Supplements. EFSA opinion on the safety and bioavailability of silicone from ch-OSA added for nutritional purposes in food supplements. | ch-OSA, SiO2, OSA gel, and MMST | currently approved for use in the production of food supplements |
EFSA opinion on OSA-VC as a novel food ingredient used in food supplements | OSA-VC | approved as novel food ingredients used in food supplements |
EFSA opinion on MMST as a novel food ingredient used in supplements. | MMST | approved as novel food ingredients used in food supplements |
EFSA, re-evaluation of silicon dioxide (silica, E551) as a food additive. | silica only in synthetic amorphous silica (E551), without colloidal silica | approved as a food additive, including food supplement |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowska, A.; Świderski, F. Sources, Bioavailability, and Safety of Silicon Derived from Foods and Other Sources Added for Nutritional Purposes in Food Supplements and Functional Foods. Appl. Sci. 2020, 10, 6255. https://doi.org/10.3390/app10186255
Sadowska A, Świderski F. Sources, Bioavailability, and Safety of Silicon Derived from Foods and Other Sources Added for Nutritional Purposes in Food Supplements and Functional Foods. Applied Sciences. 2020; 10(18):6255. https://doi.org/10.3390/app10186255
Chicago/Turabian StyleSadowska, Anna, and Franciszek Świderski. 2020. "Sources, Bioavailability, and Safety of Silicon Derived from Foods and Other Sources Added for Nutritional Purposes in Food Supplements and Functional Foods" Applied Sciences 10, no. 18: 6255. https://doi.org/10.3390/app10186255
APA StyleSadowska, A., & Świderski, F. (2020). Sources, Bioavailability, and Safety of Silicon Derived from Foods and Other Sources Added for Nutritional Purposes in Food Supplements and Functional Foods. Applied Sciences, 10(18), 6255. https://doi.org/10.3390/app10186255