Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Dataset
3.2. GrowCut Segmentation
3.3. Wavelet Transform
3.4. Radiomic Feature Extraction
- First Order (FIRST ORDER): Describes the individual values of voxels obtained as a result of ROI cropping. These are generally histogram-based properties (energy, entropy, kurtosis, skewness).
- Gray Level Co-occurrence Matrix (GLCM): Calculates how often the same and similar pixel values come together in an image and takes statistical measurements according to this matrix. These resulting values numerically characterize the texture of the image [48].
- Gray Level Run Length Matrix (GLRLM): Defined as the number of homogeneous consecutive pixels with the same gray tone and quantifies the gray-level studies [49].
- Gray Level Size Zone Matrix (GLSZM): Properties based on this matrix assign voxel counts according to the logic of measuring gray-level regions in an image.
- Neighboring Gray Tone Difference Matrix (NGTDM): Digitization of textures obtained from filtered images and their fractal properties. Mathematical definitions of these properties are evaluated independently of the imaging method.
- Gray Level Dependence Matrix (GLDM): Number of bound voxels at x distance from the central voxel.
3.5. Statistical Analysis and Feature Selection
3.6. Deep Neural Network (DNN) Model
4. Results
4.1. Data Exploration
4.2. Performance Evaluation
5. Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Conflicts of Interest
Appendix A
Number/Wavelet Group | Class | Feature | Mann-Whitney U Test | Evaluation |
---|---|---|---|---|
w1-LLH | First Order | Energy | p = 0.004 | p < 0.05 |
w2-LLH | First Order | TotalEnergy | p = 0.007 | p < 0.05 |
w3-LLH | GLDM | DependenceNonUniformity | p = 0.000 | p < 0.05 |
w4-LLH | GLDM | GrayLevelNonUniformity | p = 0.009 | p < 0.05 |
w5-LLH | GLDM | LargeDependenceHighGrayLevelEmphasis | p = 0.047 | p < 0.05 |
w6-LLH | GLDM | LowGrayLevelEmphasis | p = 0.007 | p < 0.05 |
w7-LLH | GLDM | SmallDependenceLowGrayLevelEmphasis | p = 0.000 | p < 0.05 |
w8-LLH | GLRLM | GrayLevelNonUniformity | p = 0.005 | p < 0.05 |
w9-LLH | GLRLM | LongRunLowGrayLevelEmphasis | p = 0.013 | p < 0.05 |
w10-LLH | GLRLM | LowGrayLevelRunEmphasis | p = 0.007 | p < 0.05 |
w11-LLH | GLRLM | RunLengthNonUniformity | p = 0.000 | p < 0.05 |
w12-LLH | GLRLM | ShortRunLowGrayLevelEmphasis | p = 0.005 | p < 0.05 |
w13-LLH | GLSZM | GrayLevelNonUniformity | p = 0.000 | p < 0.05 |
w14-LLH | GLSZM | LowGrayLevelZoneEmphasis | p = 0.006 | p < 0.05 |
w15-LLH | GLSZM | SizeZoneNonUniformity | p = 0.000 | p < 0.05 |
w16-LLH | GLSZM | SmallAreaLowGrayLevelEmphasis | p = 0.003 | p < 0.05 |
w17-LLH | GLSZM | ZoneEntropy | p = 0.037 | p < 0.05 |
w18-LLH | NGTDM | Coarseness | p = 0.000 | p < 0.05 |
w1-LHL | First Order | Energy | p = 0.010 | p < 0.05 |
w2-LHL | First Order | TotalEnergy | p = 0.017 | p < 0.05 |
w3-LHL | GLCM | Idmn | p = 0.025 | p < 0.05 |
w4-LHL | GLCM | Idn | p = 0.036 | p < 0.05 |
w5-LHL | GLDM | DependenceNonUniformity | p = 0.000 | p < 0.05 |
w6-LHL | GLDM | GrayLevelNonUniformity | p = 0.005 | p < 0.05 |
w7-LHL | GLDM | LargeDependenceHighGrayLevelEmphasis | p = 0.016 | p < 0.05 |
w8-LHL | GLDM | LowGrayLevelEmphasis | p = 0.041 | p < 0.05 |
w9-LHL | GLDM | SmallDependenceLowGrayLevelEmphasis | p = 0.001 | p < 0.05 |
w10-LHL | GLRLM | GrayLevelNonUniformity | p = 0.002 | p < 0.05 |
w11-LHL | GLRLM | LowGrayLevelRunEmphasis | p = 0.040 | p < 0.05 |
w12-LHL | GLRLM | RunLengthNonUniformity | p = 0.000 | p < 0.05 |
w13-LHL | GLRLM | ShortRunLowGrayLevelEmphasis | p = 0.029 | p < 0.05 |
w14-LHL | GLSZM | GrayLevelNonUniformity | p = 0.000 | p < 0.05 |
w15-LHL | GLSZM | LargeAreaHighGrayLevelEmphasis | p = 0.005 | p < 0.05 |
w16-LHL | GLSZM | LowGrayLevelZoneEmphasis | p = 0.028 | p < 0.05 |
w17-LHL | GLSZM | SizeZoneNonUniformity | p = 0.001 | p < 0.05 |
w18-LHL | GLSZM | SmallAreaLowGrayLevelEmphasis | p = 0.017 | p < 0.05 |
w19-LHL | NGTDM | Coarseness | p = 0.000 | p < 0.05 |
w1-LHH | First Order | Energy | p = 0.009 | p < 0.05 |
w2-LHH | First Order | TotalEnergy | p = 0.016 | p < 0.05 |
w3-LHH | GLDM | DependenceNonUniformity | p = 0.000 | p < 0.05 |
w4-LHH | GLDM | GrayLevelNonUniformity | p = 0.004 | p < 0.05 |
w5-LHH | GLDM | LargeDependenceHighGrayLevelEmphasis | p = 0.023 | p < 0.05 |
w6-LHH | GLDM | SmallDependenceLowGrayLevelEmphasis | p = 0.004 | p < 0.05 |
w7-LHH | GLRLM | GrayLevelNonUniformity | p = 0.002 | p < 0.05 |
w8-LHH | GLRLM | RunLengthNonUniformity | p = 0.000 | p < 0.05 |
w9-LHH | GLSZM | GrayLevelNonUniformity | p = 0.000 | p < 0.05 |
w10-LHH | GLSZM | LargeAreaHighGrayLevelEmphasis | p = 0.012 | p < 0.05 |
w11-LHH | GLSZM | LowGrayLevelZoneEmphasis | p = 0.043 | p < 0.05 |
w12-LHH | GLSZM | SizeZoneNonUniformity | p = 0.003 | p < 0.05 |
w13-LHH | GLSZM | SmallAreaLowGrayLevelEmphasis | p = 0.025 | p < 0.05 |
w14-LHH | NGTDM | Coarseness | p = 0.000 | p < 0.05 |
w1-LLL | GLCM | Idmn | p = 0.002 | p < 0.05 |
w2-LLL | GLCM | Idn | p = 0.003 | p < 0.05 |
w3-LLL | GLCM | JointEntropy | p = 0.023 | p < 0.05 |
w4-LLL | GLDM | DependenceEntropy | p = 0.004 | p < 0.05 |
w5-LLL | GLDM | DependenceNonUniformity | p = 0.000 | p < 0.05 |
w6-LLL | GLDM | GrayLevelNonUniformity | p = 0.012 | p < 0.05 |
w7-LLL | GLDM | LowGrayLevelEmphasis | p = 0.018 | p < 0.05 |
w8-LLL | GLDM | SmallDependenceLowGrayLevelEmphasis | p = 0.002 | p < 0.05 |
w9-LLL | GLRLM | GrayLevelNonUniformity | p = 0.008 | p < 0.05 |
w10-LLL | GLRLM | LongRunLowGrayLevelEmphasis | p = 0.025 | p < 0.05 |
w11-LLL | GLRLM | LowGrayLevelRunEmphasis | p = 0.016 | p < 0.05 |
w12-LLL | GLRLM | RunLengthNonUniformity | p = 0.000 | p < 0.05 |
w13-LLL | GLRLM | ShortRunLowGrayLevelEmphasis | p = 0.015 | p < 0.05 |
w14-LLL | GLSZM | GrayLevelNonUniformity | p = 0.000 | p < 0.05 |
w15-LLL | GLSZM | LargeAreaHighGrayLevelEmphasis | p = 0.004 | p < 0.05 |
w16-LLL | GLSZM | LowGrayLevelZoneEmphasis | p = 0.013 | p < 0.05 |
w17-LLL | GLSZM | SizeZoneNonUniformity | p = 0.000 | p < 0.05 |
w18-LLL | GLSZM | SmallAreaLowGrayLevelEmphasis | p = 0.006 | p < 0.05 |
w19-LLL | GLSZM | ZoneEntropy | p = 0.010 | p < 0.05 |
w20-LLL | NGTDM | Coarseness | p = 0.000 | p < 0.05 |
w1-HLL | First Order | Energy | p = 0.010 | p < 0.05 |
w2-HLL | First Order | TotalEnergy | p = 0.025 | p < 0.05 |
w3-HLL | GLDM | DependenceNonUniformity | p = 0.000 | p < 0.05 |
w4-HLL | GLDM | GrayLevelNonUniformity | p = 0.007 | p < 0.05 |
w5-HLL | GLDM | SmallDependenceLowGrayLevelEmphasis | p = 0.008 | p < 0.05 |
w6-HLL | GLRLM | GrayLevelNonUniformity | p = 0.002 | p < 0.05 |
w7-HLL | GLRLM | RunLengthNonUniformity | p = 0.000 | p < 0.05 |
w8-HLL | GLSZM | GrayLevelNonUniformity | p = 0.000 | p < 0.05 |
w9-HLL | GLSZM | LargeAreaHighGrayLevelEmphasis | p = 0.026 | p < 0.05 |
w10-HLL | GLSZM | SizeZoneNonUniformity | p = 0.001 | p < 0.05 |
w11-HLL | NGTDM | Coarseness | p = 0.000 | p < 0.05 |
w1-HLH | First Order | Energy | p = 0.002 | p < 0.05 |
w2-HLH | First Order | TotalEnergy | p = 0.005 | p < 0.05 |
w3-HLH | GLCM | Correlation | p = 0.047 | p < 0.05 |
w4-HLH | GLDM | DependenceNonUniformity | p = 0.000 | p < 0.01 |
w5-HLH | GLDM | GrayLevelNonUniformity | p = 0.006 | p < 0.01 |
w6-HLH | GLDM | LargeDependenceHighGrayLevelEmphasis | p = 0.026 | p < 0.05 |
w7-HLH | GLDM | LowGrayLevelEmphasis | p = 0.044 | p < 0.05 |
w8-HLH | GLDM | SmallDependenceLowGrayLevelEmphasis | p = 0.011 | p < 0.05 |
w9-HLH | GLRLM | GrayLevelNonUniformity | p = 0.002 | p < 0.01 |
w10-HLH | GLRLM | LowGrayLevelRunEmphasis | p = 0.043 | p < 0.05 |
w11-HLH | GLRLM | RunLengthNonUniformity | p = 0.000 | p < 0.01 |
w12-HLH | GLRLM | ShortRunLowGrayLevelEmphasis | p = 0.035 | p < 0.05 |
w13-HLH | GLSZM | GrayLevelNonUniformity | p = 0.000 | p < 0.01 |
w14-HLH | GLSZM | LargeAreaHighGrayLevelEmphasis | p = 0.022 | p < 0.05 |
w15-HLH | GLSZM | LowGrayLevelZoneEmphasis | p = 0.023 | p < 0.05 |
w16-HLH | GLSZM | SizeZoneNonUniformity | p = 0.001 | p < 0.01 |
w17-HLH | GLSZM | SmallAreaLowGrayLevelEmphasis | p = 0.014 | p < 0.05 |
w18-HLH | GLSZM | ZoneEntropy | p = 0.022 | p < 0.05 |
w19-HLH | NGTDM | Coarseness | p = 0.000 | p < 0.01 |
w1-HHL | First Order | Energy | p = 0.012 | p < 0.05 |
w2-HHL | First Order | TotalEnergy | p = 0.025 | p < 0.05 |
w3-HHL | GLDM | DependenceNonUniformity | p = 0.000 | p < 0.01 |
w4-HHL | GLDM | GrayLevelNonUniformity | p = 0.001 | p < 0.01 |
w5-HHL | GLDM | LargeDependenceHighGrayLevelEmphasis | p = 0.034 | p < 0.05 |
w6-HHL | GLDM | SmallDependenceLowGrayLevelEmphasis | p = 0.002 | p < 0.01 |
w7-HHL | GLRLM | GrayLevelNonUniformity | p = 0.000 | p < 0.01 |
w8-HHL | GLRLM | RunLengthNonUniformity | p = 0.000 | p < 0.01 |
w9-HHL | GLSZM | GrayLevelNonUniformity | p = 0.000 | p < 0.01 |
w10-HHL | GLSZM | LargeAreaHighGrayLevelEmphasis | p = 0.001 | p < 0.01 |
w11-HHL | GLSZM | LowGrayLevelZoneEmphasis | p = 0.049 | p < 0.05 |
w12-HHL | GLSZM | SizeZoneNonUniformity | p = 0.025 | p < 0.05 |
w13-HHL | NGTDM | Coarseness | p = 0.000 | p < 0.01 |
w1-HHH | First Order | Energy | p = 0.010 | p < 0.01 |
w2-HHH | First Order | TotalEnergy | p = 0.021 | p < 0.05 |
w3-HHH | GLDM | DependenceNonUniformity | p = 0.000 | p < 0.01 |
w4-HHH | GLDM | GrayLevelNonUniformity | p = 0.001 | p < 0.01 |
w5-HHH | GLDM | LargeDependenceHighGrayLevelEmphasis | p = 0.042 | p < 0.05 |
w6-HHH | GLDM | SmallDependenceLowGrayLevelEmphasis | p = 0.007 | p < 0.01 |
w7-HHH | GLRLM | GrayLevelNonUniformity | p = 0.000 | p < 0.01 |
w8-HHH | GLRLM | RunLengthNonUniformity | p = 0.000 | p < 0.01 |
w9-HHH | GLSZM | GrayLevelNonUniformity | p = 0.000 | p < 0.01 |
w10-HHH | GLSZM | LargeAreaHighGrayLevelEmphasis | p = 0.001 | p < 0.01 |
w11-HHH | GLSZM | SizeZoneNonUniformity | p = 0.004 | p < 0.01 |
w12-HHH | NGTDM | Coarseness | p = 0.000 | p < 0.01 |
References
- Acharya, U.R.; Fernandes, S.L.; WeiKoh, J.E.; Ciaccio, E.J.; Fabell, M.K.M.; Tanik, U.J.; Rajinikanth, V.; Yeong, C.H. Automated Detection of Alzheimer’s Disease Using Brain MRI Images—A Study with Various Feature Extraction Techniques. J. Med. Syst. 2019, 43, 302. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, M.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badža, M.M.; Barjaktarovic, M. Classification of Brain Tumors from MRI Images Using a Convolutional Neural Network. Appl. Sci. 2020, 10, 1999. [Google Scholar] [CrossRef] [Green Version]
- Brat, D.J.; Verhaak, R.G.; Aldape, K.D.; Yung, W.K.; Salama, S.R.; Cooper, L.A.D.; Rheinbay, E.; Miller, C.R.; Vitucci, M.; Morozova, O.; et al. Cancer Genome Atlas Research Network. Comprehensive, integrative genomic analysis of diffuse lowergrade gliomas. N. Engl. J. Med. 2015, 372, 2481–2498. [Google Scholar]
- Brunese, L.; Mercaldo, F.; Reginelli, A.; Santone, A. An ensemble learning approach for brain cancer detection exploiting radiomic features. Comput. Methods Programs Biomed. 2020, 185, 105134. [Google Scholar] [CrossRef]
- Chen, W.; Liu, B.; Peng, S.; Sun, J.; Qiao, X. Computer-Aided Grading of Gliomas Combining Automatic Segmentation and Radiomics. Int. J. Biomed. Imaging 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.; Kim, J.-H.; Lee, H.Y.; Ahn, Y.C.; Lee, K.S.; Ahn, M.-J.; Kim, J.; Shim, Y.M.; Han, J.; Choi, Y.-L. Quantitative CT Variables Enabling Response Prediction in Neoadjuvant Therapy with EGFR-TKIs: Are They Different from Those in Neoadjuvant Concurrent Chemoradiotherapy? PLoS ONE 2014, 9, e88598. [Google Scholar] [CrossRef]
- Kolossváry, M.; Kellermayer, M.; Merkely, B.; Maurovich-Horvat, P. Cardiac Computed Tomography Radiomics. J. Thorac. Imaging 2018, 33, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Limkin, E.J.C.; Sun, R.; Dercle, L.; Zacharaki, E.I.; Robert, C.; Reuzé, S.; Schernberg, A.; Paragios, N.; Deutsch, E.; Ferté, C. Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology. Ann. Oncol. 2017, 28, 1191–1206. [Google Scholar] [CrossRef]
- Tian, Q.; Yan, L.-F.; Zhang, X.; Hu, Y.-C.; Han, Y.; Liu, Z.-C.; Nan, H.-Y.; Sun, Q.; Sun, Y.-Z.; Yang, Y.; et al. Radiomics strategy for glioma grading using texture features from multiparametric MRI. J. Magn. Reson. Imaging 2018, 48, 1518–1528. [Google Scholar] [CrossRef]
- Cui, G.; Jeong, J.; Press, B.; Lei, Y.; Shu, H.-K.; Liu, T.; Curran, W.; Mao, H.; Yang, X. Machine-learning-based Classification of Lower-grade gliomas and High-grade gliomas using Radiomic Features in Multi-parametric MRI 2019. arXiv Preprint 2019, arXiv:1911.10145. [Google Scholar]
- Hsieh, K.L.-C.; Chen, C.-Y.; Lo, C.-M. Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Comput. Boil. Med. 2017, 83, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.L.-C.; Lo, C.-M.; Hsiao, C.-J. Computer-aided grading of gliomas based on local and global MRI features. Comput. Methods Programs Biomed. 2017, 139, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.-B.; Liu, Z.; Zhang, H.; Shen, C.; Wang, X.-C.; Tan, Y.; Wang, S.; Wu, X.-F.; Tian, J. Grading of Gliomas by Using Radiomic Features on Multiple Magnetic Resonance Imaging (MRI) Sequences. Med. Sci. Monit. 2017, 23, 2168–2178. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.-H.; Lee, S.-H.; Kim, J.; Park, H. Classification of the glioma grading using radiomics analysis. PeerJ 2018, 6, e5982. [Google Scholar] [CrossRef] [Green Version]
- Mohan, G.; Subashini, M.M. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed. Signal. Process. Control. 2018, 39, 139–161. [Google Scholar] [CrossRef]
- Ramteke, R.; Monali, K.Y. Automatic medical image classification and abnormality detection using k-nearest neighbour. Int. J. Adv. Comput. Res. 2012, 2, 190. [Google Scholar]
- Gadpayleand, P.; Mahajani, P. Detection and classification of brain tumor in MRI images. Int. J. Electr. Comput. Eng. 2013, 5, 45–49. [Google Scholar]
- Ghosh, D.; Bandyopadhyay, S.K. Brain tumor detection from MRI image: An approach. Int. J. Appl. Res. 2017, 3, 1152–1159. [Google Scholar]
- Abidin, A.Z.; Dar, I.; D’Souza, A.M.; Lin, E.P.; Wismüller, A. Investigating a quantitative radiomics approach for brain tumor classification. In Proceedings of the Medical Imaging 2019: Biomedical Applications in Molecular, Structural, and Functional Imaging, San Diego, CA, USA, 19–21 February 2019; 2019; p. 109530. [Google Scholar]
- George, D.N.; Jehlol, H.B.; Oleiwi, A.S.A. Brain tumor detection using shape features and machine learning algorithms. Int. J. Adv. Res. Comput. Sci. Softw. Eng. (IJARCSSE) 2015, 5, 454–459. [Google Scholar]
- Bahadure, N.; Ray, A.K.; Thethi, H.P. Image Analysis for MRI Based Brain Tumor Detection and Feature Extraction Using Biologically Inspired BWT and SVM. Int. J. Biomed. Imaging 2017, 2017, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabizadeh, N.; Kubat, M. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput. Electr. Eng. 2015, 45, 286–301. [Google Scholar] [CrossRef]
- Vial, A.; Stirling, D.; Field, M.; Ros, M.; Ritz, C.; Carolan, M.; Holloway, L.; Miller, A.A. The role of deep learning and radiomic feature extraction in cancer-specific predictive modelling: A review. Transl. Cancer Res. 2018, 7, 803–816. [Google Scholar] [CrossRef]
- Vezhnevets, V.; Konouchine, V. GrowCut: Interactive multi-label ND image segmentation by cellular automata. Proc. Graph. 2005, 150–156. [Google Scholar]
- Clark, K.W.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Akkus, Z.; Ali, I.; Sedlář, J.; Agrawal, J.P.; Parney, I.F.; Giannini, C.; Erickson, B.J. Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence. J. Digit. Imaging 2017, 30, 469–476. [Google Scholar] [CrossRef] [Green Version]
- Erickson, B.; Akkus, Z.; Sedlar, J.; Kofiatis, P. Data from LGG-1p19qDeletion. The Cancer Imaging Archive 2017. Available online: https://doi.org/10.7937/K9/TCIA.2017.dwehtz9v (accessed on 15 February 2020).
- Arya, A.; Bhateja, V.; Nigam, M.; Bhadauria, A.S. Enhancement of brain MR-T1/T2 images using mathematical morphology. In Information and Communication Technology for Sustainable Development; Springer: Singapore, 2020; pp. 833–840. [Google Scholar]
- Amin, J.; Sharif, M.; Gul, N.; Yasmin, M.; Shad, S.A. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recognit. Lett. 2020, 129, 115–122. [Google Scholar] [CrossRef]
- Szwarc, P.; Kawa, J.; Bobek-Billewicz, B.; Pietka, E. Segmentation of brain tumours in MR images using fuzzy clustering techniques. In Proceedings of the Computer Assisted Radiology and Surgery (CARS), Geneva, Switzerland, 23–26 June 2010; pp. 20–24. [Google Scholar]
- Gibbs, P.; Buckley, D.; Blackband, S.J.; Horsman, A. Tumour volume determination from MR images by morphological segmentation. Phys. Med. Boil. 1996, 41, 2437–2446. [Google Scholar] [CrossRef]
- Droske, M.; Meyer, B.; Rumpf, M.; Schaller, C. An adaptive level set method for interactive segmentation of intracranial tumors. Neurol. Res. 2005, 27, 363–370. [Google Scholar] [CrossRef]
- Egger, J.; Colen, R.R.; Freisleben, B.; Nimsky, C. Manual refinement system for graph-based segmentation results in the medical domain. J. Med. Syst. 2011, 36, 2829–2839. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Che, X.; Ma, S. Nonlinear filtering based on 3D wavelet transform for MRI denoising. EURASIP J. Adv. Signal. Process. 2012, 2012, 40. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-Y.; Cho, N.-H.; Jeong, G.-B.; Bengtsson, E.; Choi, H.-K. 3D Texture Analysis in Renal Cell Carcinoma Tissue Image Grading. Comput. Math. Methods Med. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Artzi, M.; Bressler, I.; Ben Bashat, D. Differentiation between glioblastoma, brain metastasis and subtypes using radiomics analysis. J. Magn. Reson. Imaging 2019, 50, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Ullah, Z.; Farooq, M.U.; Lee, S.-H.; An, D. A Hybrid Image Enhancement Based Brain MRI Images Classification Technique. Med. Hypotheses 2020, 109922. [Google Scholar] [CrossRef]
- Strang, G.; Nguyen, T. Wavelets and Filter Banks; Wellesley-Cambridge Press: Wellesley, MA, USA, 1997; ISBN 0-9614088-7-1. [Google Scholar]
- Mallat, S.G.; Heil, C.; Walnut, D.F. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. Ten Lectures on Wavelets (CBMS-NSF Regional Conference Series in Applied Mathematics); SIAM: Philadelphia, PA, USA, 1990. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Sharif, I.; Khare, S. Comparative Analysis of Haar and Daubechies Wavelet for Hyper Spectral Image Classification. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2014, 40, 937–941. [Google Scholar] [CrossRef] [Green Version]
- Daubechies, I. Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988, 41, 909–996. [Google Scholar] [CrossRef] [Green Version]
- Soufi, M.; Arimura, H.; Nagami, N. Identification of optimal mother wavelets in survival prediction of lung cancer patients using wavelet decomposition-based radiomic features. Med. Phys. 2018, 45, 5116–5128. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Van Griethuysen, J.J.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [Green Version]
- Lambin, P.; Leijenaar, R.T.; Deist, T.M.; Peerlings, J.; De Jong, E.E.; Van Timmeren, J.E.; Sanduleanu, S.; LaRue, R.T.; Even, A.J.; Jochems, A.; et al. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Thibault, G.; Angulo, J.; Meyer, F. Advanced Statistical Matrices for Texture Characterization: Application to Cell Classification. IEEE Trans. Biomed. Eng. 2013, 61, 630–637. [Google Scholar] [CrossRef] [PubMed]
- IBM SPSS. IBM SPSS Statistics; Version 21; International Business Machines Corp: Boston, MA, USA, 2012; p. 126. [Google Scholar]
- Altın, Ş. Investigation of Relationships Between Salesperson’s Perceptions of Ethics towards Customers and Job Satisfaction with Structural Equation Modeling, Social and Human Sciences Studies; Çizgi Kitabevi: Konya, Turkey, 2018; pp. 276–285. ISBN 978-605-196-190-3. [Google Scholar]
- Kalaycı, Ş. SPSS Applied Multivariate Statistical Techniques; Asil Publication: Ankara, Turkey, 2010; p. 5. [Google Scholar]
- Tharani, S.; Yamini, C. Classification using Convolutional Neural Network for Heart and Diabetics Datasets. IJARCCE 2016, 5, 417–422. [Google Scholar] [CrossRef]
- Ravì, D.; Wong, C.; Deligianni, F.; Berthelot, M.; Andreu-Perez, J.; Lo, B.P.L.; Yang, G.-Z. Deep Learning for Health Informatics. IEEE J. Biomed. Health Inform. 2017, 21, 4–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohsen, H.; El-Dahshan, E.-S.A.; Ei-Horbaty, E.-S.M.; Salem, A.-B.M. Classification using deep learning neural networks for brain tumors. Futur. Comput. Informatics J. 2018, 3, 68–71. [Google Scholar] [CrossRef]
- Nishio, M.; Sugiyama, O.; Yakami, M.; Ueno, S.; Kubo, T.; Kuroda, T.; Togashi, K. Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE 2018, 13, e0200721. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xu, L.; Li, Z.; Lu, Q.; Liu, Y. A Deep-Intelligence Framework for Online Video Processing. IEEE Softw. 2016, 33, 44–51. [Google Scholar] [CrossRef]
- Arslan, R.S.; Barişçi, N. Development of Output Correction Methodology for Long Short Term Memory-Based Speech Recognition. Sustainability 2019, 11, 4250. [Google Scholar] [CrossRef] [Green Version]
- Stanitsas, P.; Cherian, A.; Li, X.; Truskinovsky, A.; Morellas, V.; Papanikolopoulos, N. Evaluation of feature descriptors for cancerous tissue recognition. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 1490–1495. [Google Scholar]
- Gao, Z.; Wang, L.; Zhou, L.; Zhang, J. HEp-2 Cell Image Classification With Deep Convolutional Neural Networks. IEEE J. Biomed. Health Inform. 2016, 21, 416–428. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.S.; Amin, S.U.; Alsulaiman, M.; Muhammad, G. Applying Deep Learning for Epilepsy Seizure Detection and Brain Mapping Visualization. ACM Trans. Multimed. Comput. Commun. Appl. 2019, 15, 1–17. [Google Scholar] [CrossRef]
- Candel, A.; Parmar, V.; LeDell, E.; Arora, A. Deep Learning with H2O; H2O. ai, Inc.: Mountain View, CA, USA, September 2016. [Google Scholar]
- Cook, D. Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep Learning and AI; O’Reilly Media, Inc.: Sebastopol, CA, USA, December 2016; ISBN 978-1-491-96460-6. [Google Scholar]
- Liu, L.; Chen, R.-C. A novel passenger flow prediction model using deep learning methods. Transp. Res. Part C Emerg. Technol. 2017, 84, 74–91. [Google Scholar] [CrossRef]
- Varghese, B.A.; Cen, S.Y.; Hwang, D.H.; Duddalwar, V.A. Texture Analysis of Imaging: What Radiologists Need to Know. Am. J. Roentgenol. 2019, 212, 520–528. [Google Scholar] [CrossRef]
- Shiri, I.; Ghafarian, P.; Geramifar, P.; Leung, K.H.-Y.; Ghelichoghli, M.; Oveisi, M.; Rahmim, A.; Ay, M.R. Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC). Eur. Radiol. 2019, 29, 6867–6879. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.T.; Schreckenberger, M.; Spetzger, U.; Meyer, G.F.; Sabri, O.; Setani, K.S.; Zeggel, T.; Buell, U. Comparison of visual and ROI-based brain tumour grading using 18F-FDG PET: ROC analyses. Eur. J. Nucl. Med. Mol. Imaging 2001, 28, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Hakyemez, B.; Erdogan, C.; Ercan, I.; Ergin, N.; Uysal, S.; Atahan, Ş. High-grade and low-grade gliomas: Differentiation by using perfusion MR imaging. Clin. Radiol. 2005, 60, 493–502. [Google Scholar] [CrossRef]
- Weng, W.; Chen, X.; Gong, S.; Guo, L.; Zhang, X. Preoperative neutrophil–lymphocyte ratio correlated with glioma grading and glioblastoma survival. Neurol. Res. 2018, 40, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Arevalo-Perez, J.; Peck, K.K.; Young, R.J.; Holodny, A.I.; Karimi, S.; Lyo, J. Dynamic Contrast-Enhanced Perfusion MRI and Diffusion-Weighted Imaging in Grading of Gliomas. J. Neuroimaging 2015, 25, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Coroller, T.P.; Bi, W.L.; Huynh, E.; Abedalthagafi, M.; Aizer, A.A.; Greenwald, N.F.; Parmar, C.; Narayan, V.; Wu, W.W.; De Moura, S.M.; et al. Radiographic prediction of meningioma grade by semantic and radiomic features. PLoS ONE 2017, 12, e0187908. [Google Scholar] [CrossRef] [Green Version]
- Rundo, L.; Militello, C.; Russo, G.; Vitabile, S.; Gilardi, M.C.; Mauri, G. GTV cut for neuro-radiosurgery treatment planning: An MRI brain cancer seeded image segmentation method based on a cellular automata model. Nat. Comput. 2018, 17, 521–536. [Google Scholar] [CrossRef]
- Sompong, C.; Wongthanavasu, S. An efficient brain tumor segmentation based on cellular automata and improved tumor-cut algorithm. Expert Syst. Appl. 2017, 72, 231–244. [Google Scholar] [CrossRef]
- Rundo, L.; Stefano, A.; Militello, C.; Russo, G.; Sabini, M.G.; D’Arrigo, C.; Marletta, F.; Ippolito, M.; Mauri, G.; Vitabile, S.; et al. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning. Comput. Methods Programs Biomed. 2017, 144, 77–96. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Kolesov, I.; Gao, Y.; Kikinis, R.; Tannenbaum, A. An effective interactive medical image segmentation method using fast growcut. In Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), Interactive Medical Image Computing Workshop, Boston, MA, USA, 14–18 September 2014. [Google Scholar]
- Kharrat, A.; Ben Halima, M.; Ben Ayed, M. MRI brain tumor classification using Support Vector Machines and meta-heuristic method. In Proceedings of the 2015 15th International Conference on Intelligent Systems Design and Applications (ISDA), Marrakech, Morocco, 14–16 December 2015; pp. 446–451. [Google Scholar]
- Welch, M.L.; McIntosh, C.; Haibe-Kains, B.; Milosevic, M.; Wee, L.; Dekker, A.; Huang, S.; Purdie, T.G.; O’Sullivan, B.; Aerts, H.J.W.L.; et al. Vulnerabilities of radiomic signature development: The need for safeguards. Radiother. Oncol. 2019, 130, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, X.; Liu, J.G.; Cao, Y.S. Classification of Low-grade and High-grade Glioma using Multiparametric Radiomics Model. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 574–577. [Google Scholar]
- Kharat, K.D.; Kulkarni, P.P.; Nagori, M.B. Brain Tumor Classification Using Neural Network Based Methods. Int. J. Comput. Sci. Inform. 2012, 1, 2231–5292. [Google Scholar]
- Dong, F.; Li, Q.; Jiang, B.; Zhu, X.; Zeng, Q.; Huang, P.; Chen, S.; Zhang, M. Differentiation of supratentorial single brain metastasis and glioblastoma by using peri-enhancing oedema region-derived radiomic features and multiple classifiers. Eur. Radiol. 2020, 1–8. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Lee, C.-C.; Yang, H.-C.; Lin, C.-J.; Wu, H.-M.; Chung, W.-Y.; Shiau, C.-Y.; Guo, W.-Y.; Pan, D.H.-C.; Peng, S.-J. Radiomics as prognostic factor in brain metastases treated with Gamma Knife radiosurgery. J. Neuro-Oncol. 2020, 146, 439–449. [Google Scholar] [CrossRef]
- Mouraviev, A.; Detsky, J.; Sahgal, A.; Ruschin, M.; Lee, Y.K.; Karam, I.; Heyn, C.; Stanisz, G.J.; Martel, A.L. Use of radiomics for the prediction of local control of brain metastases after stereotactic radiosurgery. J. Neuro-Oncol. 2020, 22, 797–805. [Google Scholar] [CrossRef]
- Khawaldeh, S.; Pervaiz, U.; Rafiq, A.; Alkhawaldeh, R.S. Noninvasive Grading of Glioma Tumor Using Magnetic Resonance Imaging with Convolutional Neural Networks. Appl. Sci. 2017, 8, 27. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhang, S.; Chen, H.; Luo, L. Brain Tumor Segmentation and Survival Prediction Using Multimodal MRI Scans With Deep Learning. Front. Mol. Neurosci. 2019, 13, 810. [Google Scholar] [CrossRef] [Green Version]
- Sajjad, M.; Khan, S.; Muhammad, K.; Wu, W.; Ullah, A.; Baik, S.W. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J. Comput. Sci. 2019, 30, 174–182. [Google Scholar] [CrossRef]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [Green Version]
- Qin, P.; Zhang, J.; Zeng, J.; Liu, H.; Cui, Y. A framework combining DNN and level-set method to segment brain tumor in multi-modalities MR image. Soft Comput. 2019, 23, 9237–9251. [Google Scholar] [CrossRef]
- Zia, R.; Akhtar, P.; Aziz, A. A new rectangular window based image cropping method for generalization of brain neoplasm classification systems. Int. J. Imaging Syst. Technol. 2017, 28, 153–162. [Google Scholar] [CrossRef]
- Rathi, V.G.P.; Palani, S. Brain tumor detection and classification using deep learning classifier on MRI images. Res. J. Appl. Sci. Eng. Technol. 2015, 10, 177–187. [Google Scholar]
- Ahammed, M.K.V.; Rajendran, V.R.; Paul, J. Glioma Tumor Grade Identification Using Artificial Intelligent Techniques. J. Med. Syst. 2019, 43, 113. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Optimizer | Stochastic gradient descent |
Epsilon | 0.00000001 |
Elastic regularization | 0.001 |
Learning rate | 0.005 |
Loss | Cross-entropy |
Epoch | 10 |
Mini-batch | 1 |
Wavelet Sub-Bands | Weight/Biases | Memory Workload | Training Samples |
---|---|---|---|
HHH | 43.202 | 516.0 KB | 784 |
HHL | 43.402 | 518.5 KB | 821 |
HLH | 44.602 | 533.6 KB | 772 |
HLL | 43.002 | 513.5 KB | 790 |
LHH | 43.602 | 521.0 KB | 812 |
LHL | 44.602 | 533.6 KB | 826 |
LLH | 44.402 | 531.1 KB | 816 |
LLL | 44.802 | 536.1 KB | 837 |
Groups | Grade II | Grade III | Total |
---|---|---|---|
Training | 49 | 25 | 74 |
Validation | 12 | 9 | 21 |
Testing | 16 | 10 | 26 |
Predicted Class | |||
---|---|---|---|
Positive | Negative | ||
Actual Class | Positive | tp (true positive) | fn (false negative) |
Negative | fp (false positive) | tn (true negative) |
3D-Wavelet Sub-Bands | Precision (%) | Recall (%) | F1 (%) | Accuracy (%) | ROC Area (%) |
---|---|---|---|---|---|
W-HHH | 0.9412 | 1.0000 | 0.9697 | 0.9615 | 0.9875 |
W-HHL | 0.8000 | 1.0000 | 0.8889 | 0.8462 | 0.8562 |
W-HLH | 0.9091 | 0.6250 | 0.7407 | 0.7308 | 0.8375 |
W-HLL | 1.0000 | 0.6875 | 0.8148 | 0.8077 | 0.8562 |
W-LHH | 0.9286 | 0.8125 | 0.8667 | 0.8462 | 0.8437 |
W-LHL | 0.8571 | 0.7500 | 0.8000 | 0.7692 | 0.8000 |
W-LLH | 0.8750 | 0.8750 | 0.8750 | 0.8462 | 0.8187 |
W-LLL | 0.7895 | 0.9375 | 0.8571 | 0.8077 | 0.8125 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çinarer, G.; Emiroğlu, B.G.; Yurttakal, A.H. Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features. Appl. Sci. 2020, 10, 6296. https://doi.org/10.3390/app10186296
Çinarer G, Emiroğlu BG, Yurttakal AH. Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features. Applied Sciences. 2020; 10(18):6296. https://doi.org/10.3390/app10186296
Chicago/Turabian StyleÇinarer, Gökalp, Bülent Gürsel Emiroğlu, and Ahmet Haşim Yurttakal. 2020. "Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features" Applied Sciences 10, no. 18: 6296. https://doi.org/10.3390/app10186296
APA StyleÇinarer, G., Emiroğlu, B. G., & Yurttakal, A. H. (2020). Prediction of Glioma Grades Using Deep Learning with Wavelet Radiomic Features. Applied Sciences, 10(18), 6296. https://doi.org/10.3390/app10186296