Bearing Fault Diagnosis Based on Improved Convolutional Deep Belief Network
Abstract
:1. Introduction
- Traditional vibration signal processing and analysis methods rely on certain professional skills;
- Existing shallow machine learning methods rely on the accuracy of manual feature extraction;
- Improper selection of parameters for standard deep learning models can easily result in failure to effectively converge, thus, diagnostic accuracy is difficult to guarantee;
- Existing research on the quantitative diagnosis of bearing fault is relatively inadequate compared with that on qualitative diagnosis.
- A band pass filter has been introduced to the preprocessing step to filter out noise;
- Qualitative and quantitative diagnoses of bearing faults can be effectively implemented;
- Both single fault and compound faults can be effectively identified;
- A comparative experiment under different operation loads further confirmed the reliability of the model.
2. Theoretical Background and Proposed Method
2.1. Restricted Boltzmann Machine
2.2. Convolutional Deep Brief Network and Its Improvement
2.2.1. Convolutional Restricted Boltzmann Machine
2.2.2. CDBN and Its Improvement
- Forward propagation:
- (a)
- Use CD algorithm to pre-train W and b and determine the opening and closing of the corresponding hidden element;
- (b)
- Propagate upward layer by layer, calculate the excitation value of each hidden element, and use the sigmoid function to complete the standardization;
- Backpropagation:
- (a)
- Use the minimum mean square error criterion for the backward error propagation algorithm and update the parameters of the network.
- (b)
- Update the weight and bias of the network with Adam optimizer.
2.3. Band-Pass Filter for Signal Preprocessing
2.4. Fault Diagnosis Model Based on Improved CDBN
3. Experimental Validation
3.1. Dataset Description
3.2. Diagnosis Results and Comparative Analysis
3.2.1. Comparison with SAE, ANN, and DBN
3.2.2. Comparison with Standard CDBN
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, X.; Shen, C.; Shi, J.; Zhu, Z. Initial center frequency-guided VMD for fault diagnosis of rotating machines. J. Sound Vib. 2018, 435, 36–55. [Google Scholar] [CrossRef]
- Kumar, P.S.; Kumaraswamidhas, L.A.; Laha, S.K. Selecting effective intrinsic mode functions of empirical mode decomposition and variational mode decomposition using dynamic time warping algorithm for rolling element bearing fault diagnosis. Trans. Inst. Meas. Control 2019, 41, 1923–1932. [Google Scholar] [CrossRef]
- Huang, W.T.; Kong, F.Z.; Zhao, X.Z. Spur bevel gearbox fault diagnosis using wavelet packet transform and rough set theory. J. Intell. Manuf. 2018, 29, 1257–1271. [Google Scholar] [CrossRef]
- Kaplan, K.; Kaya, Y.; Kuncan, M.; Minaz, M.R.; Ertunç, H. An improved feature extraction method using texture analysis with LBP for bearing fault diagnosis. Appl. Soft Comput. 2020, 87, 106019. [Google Scholar] [CrossRef]
- Dong, S.J.; Wu, W.L.; He, K.; Mou, X.Y. Rolling bearing performance degradation assessment based on improved convolutional neural network with anti-interference. Measurement 2020, 151, 107219. [Google Scholar] [CrossRef]
- Gong, W.; Chen, H.; Zhang, Z.; Zhang, M.; Wang, R.; Guan, C.; Wang, Q. A Novel Deep Learning Method for Intelligent Fault Diagnosis of Rotating Machinery Based on Improved CNN-SVM and Multichannel Data Fusion. Sensors 2019, 19, 1693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Q.J.; Guo, X.Z.H.; Liu, D.S.H. Bearing fault diagnosis based on feature fusion and support vector machine. J. Electron. Meas. Instrum. 2019, 33, 104–111. [Google Scholar]
- Hongfeng, T.; Chaochao, Z.; Liu, Y.; Yajun, T. Decision Tree SVM Fault Diagnosis Method of Photovoltaic Diode-Clamped Three-Level Inverter. U.S. Patent Application 10/234,495, 19 March 2019. [Google Scholar]
- Moosavian, A.; Jafari, S.M.; Khazaee, M.; Ahmadi, H. A Comparison Between ANN, SVM and Least Squares SVM: Application in Multi-Fault Diagnosis of Rolling Element Bearing. Int. J. Acoust. Vib. 2018, 23, 432–440. [Google Scholar]
- Meng, Z.; Zhan, X.; Li, J.; Pan, Z. An enhancement denoising autoencoder for rolling bearing fault diagnosis. Measurement 2018, 130, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Liang, T.; Wu, S.; Duan, W.; Zhang, R. Bearing fault diagnosis based on improved ensemble learning and deep belief network. J. Phys. Conf. 2018, 1074, 012154. [Google Scholar] [CrossRef]
- Chen, Z.; Mauricio, A.; Li, W.; Gryllias, K. A Deep Learning method for bearing fault diagnosis based on Cyclic Spectral Coherence and Convolutional Neural Networks. Mech. Syst. Signal Process. 2020, 140, 106683. [Google Scholar] [CrossRef]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Shen, C.; Qi, Y.; Wang, J.; Cai, G.; Zhu, Z. An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder. Eng. Appl. Artif. Intell. 2018, 76, 170–184. [Google Scholar] [CrossRef]
- Shao, H.; Jiang, H.; Zhang, H.; Liang, T. Electric locomotive bearing fault diagnosis using a novel convolutional deep belief network. IEEE Trans. Ind. Electron. 2018, 65, 2727–2736. [Google Scholar] [CrossRef]
- Wen, J.T.; Yan, C.H.; Sun, J.D.; Qiao, Y. Bearing fault diagnosis method based on compressed acquisition and deep learning. Chin. J. Sci. Instrum. 2018, 39, 171–179. [Google Scholar]
- Chen, Z.; Li, W. Multi sensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network. IEEE Trans. Ind. Electron. 2017, 66, 1693–1702. [Google Scholar]
- Hinton, G.E. Training Products of Experts by Minimizing Contrastive Divergence. Neural Comput. 2014, 14, 1771–1800. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wang, X.; Wang, H.; Ma, J. Research on Remaining Useful Life Prediction of Rolling Element Bearings Based on Time-Varying Kalman Filter. IEEE Trans. Ind. Electron. 2020, 69, 2858–2867. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Learning Rate | Batch Size | Epoch | Number of Layer |
---|---|---|---|
0.001 | 200 | 20 | 2 |
Size of Convolution Kernel in the 1st Layer | Size of Convolution Kernel in the 2nd Layer | Size of Pooling Kernel in the 2nd Layer | Pooling Method |
7 × 7 | 5 × 5 | 2 × 2 | Maximum pooling |
Contact Angle | Roller Diameter | Number of Rollers |
---|---|---|
0° | 7.938 mm | 9 |
Outer Diameter | Internal Diameter | Pitch Diameter |
52 mm | 25 mm | 38.5 mm |
Fault Type | Load | Fault Degree (mm) | Train Sample | Test Sample | Label |
---|---|---|---|---|---|
Normal | 0 kN | \ | 200 | 100 | 1 |
Outer race | 0.2 | 200 | 100 | 2 | |
0.3 | 200 | 100 | 3 | ||
0.6 | 200 | 100 | 4 | ||
Ball fault | 0.2 | 200 | 100 | 5 | |
0.3 | 200 | 100 | 6 | ||
0.6 | 200 | 100 | 7 | ||
Inner race | 0.2 | 200 | 100 | 8 | |
0.3 | 200 | 100 | 9 | ||
0.6 | 200 | 100 | 10 | ||
IB | 0.2 | 200 | 100 | 11 | |
IO | 0.2 | 200 | 100 | 12 | |
OB | 0.2 | 200 | 100 | 13 |
Fault Type | Load | Fault Degree (mm) | Train Sample | Test Sample | Label |
---|---|---|---|---|---|
Normal | 1 kN | \ | 200 | 100 | 1 |
Outer race | 0.2 | 200 | 100 | 2 | |
0.3 | 200 | 100 | 3 | ||
0.6 | 200 | 100 | 4 | ||
Ball fault | 0.2 | 200 | 100 | 5 | |
0.3 | 200 | 100 | 6 | ||
0.6 | 200 | 100 | 7 | ||
Inner race | 0.2 | 200 | 100 | 8 | |
0.3 | 200 | 100 | 9 | ||
0.6 | 200 | 100 | 10 | ||
IB | 0.2 | 200 | 100 | 11 | |
IO | 0.2 | 200 | 100 | 12 | |
OB | 0.2 | 200 | 100 | 13 |
Label | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | Average Accuracy % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | |||||||||||||||
SAE | 100 | 83 | 33 | 0 | 20 | 82 | 100 | 8 | 100 | 100 | 100 | 100 | 100 | 71.23 | |
ANN | 100 | 96 | 76 | 59 | 0 | 61 | 100 | 100 | 100 | 100 | 100 | 0 | 100 | 76.31 | |
DBN | 100 | 100 | 97 | 98 | 90 | 87 | 96 | 79 | 91 | 100 | 100 | 65 | 95 | 92.15 | |
Proposed model | 100 | 100 | 100 | 100 | 100 | 98 | 96 | 96 | 100 | 100 | 100 | 86 | 100 | 98.15 |
Label | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | Average Accuracy % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | |||||||||||||||
SAE | 100 | 100 | 100 | 100 | 95 | 99 | 40 | 100 | 0 | 100 | 100 | 100 | 100 | 87.23 | |
ANN | 90 | 74 | 79 | 38 | 0 | 50 | 100 | 98 | 100 | 20 | 100 | 0 | 100 | 65.31 | |
DBN | 0 | 96 | 95 | 90 | 96 | 89 | 43 | 91 | 71 | 94 | 77 | 85 | 100 | 79.00 | |
Proposed model | 98 | 100 | 100 | 100 | 73 | 99 | 90 | 100 | 100 | 100 | 94 | 86 | 100 | 96.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Xie, J.; Shen, C.; Shang, X.; Wang, D.; Zhu, Z. Bearing Fault Diagnosis Based on Improved Convolutional Deep Belief Network. Appl. Sci. 2020, 10, 6359. https://doi.org/10.3390/app10186359
Liu S, Xie J, Shen C, Shang X, Wang D, Zhu Z. Bearing Fault Diagnosis Based on Improved Convolutional Deep Belief Network. Applied Sciences. 2020; 10(18):6359. https://doi.org/10.3390/app10186359
Chicago/Turabian StyleLiu, Shuangjie, Jiaqi Xie, Changqing Shen, Xiaofeng Shang, Dong Wang, and Zhongkui Zhu. 2020. "Bearing Fault Diagnosis Based on Improved Convolutional Deep Belief Network" Applied Sciences 10, no. 18: 6359. https://doi.org/10.3390/app10186359
APA StyleLiu, S., Xie, J., Shen, C., Shang, X., Wang, D., & Zhu, Z. (2020). Bearing Fault Diagnosis Based on Improved Convolutional Deep Belief Network. Applied Sciences, 10(18), 6359. https://doi.org/10.3390/app10186359