Egyptian Shabtis Identification by Means of Deep Neural Networks and Semantic Integration with Europeana
Abstract
:1. Introduction
2. Overview of Related Work
3. Analysis of the System
3.1. The Classification of Shabtis
3.2. The System to Detect Shabtis
- An input image is introduced in the two YOLO networks.
- If the FN model returns some detections (, ,..., ), the class with the highest confidence, , is selected after applying non-maxima suppression to suppress weak, overlapping bounding boxes.
- If the HN model returns some detections (, ,..., ), the class with the highest confidence, , is selected after applying non-maxima suppression to suppress weak, overlapping bounding boxes.
- If both models have returned detections, is selected when , and otherwise. If the bounding box is not inside the bounding box , the non-selected class is also shown to the user as another possibility whenever the class is different.
- If only the FN model has returned detections, is selected.
- If only the HN model has returned detections, is selected.
- Local data and data retrieved from Europeana are shown for the selected class.
- Batch normalization, to help regularize the model and reduce overfitting.
- High resolution images, passing from small input images of 224 × 224 to 448 × 448.
- Anchor boxes, to predict more bounding boxes per image.
- Fine-grained features, which helps to locate small objects while being efficient for large objects.
- Multi-scale training, randomly changing the image dimensions during training to detect small objects. The size is increased from a minimum of 320 × 320 to a maximum of 608 × 608.
- Modifications to the internal network, using a new classification model as a backbone classifier.
3.3. New Ontology
4. Experiments and Results Discussion
PREFIX shabt i s : <http://www.amenofis.com/shabtis.owl#> PREFIX dc : <http://purl.org/dc/elements/1.1/> PREFIX dc_e : <http://purl.org/dc/terms/> PREFIX edm: <http://www.europeana.eu/schemas/edm/> PREFIX rdf : <http://www.w3.org/1999/02/22–rdf–syntax–ns#> PREFIX ore : <http://www.openarchives.org/ore/terms/> PREFIX skos : <http://www.w3.org/2004/02/skos/core#> PREFIX rdf s : <http://www.w3.org/2000/01/rdf–schema#> SELECT DISTINCT (GROUP_CONCAT(DISTINCT CONCAT( ? value , " : " , s t r ( ? val ) ) ; SEPARATOR=" ; ; ; " ) AS ? r e l a t ionVa lue s ) (GROUP_CONCAT(DISTINCT CONCAT( ? sValue , " : " , s t r ( ? sVal ) ) ; SEPARATOR=" ; ; ; " ) AS ? showValues ) ?ProvidedCHO ? dataProvider ? provider WHERE { ?museum shabt i s : provider ? provider . ?museum shabt i s : dataProvider ? dataProvider . ?museum shabt i s : key1 ? key1 . BIND( IRI ( ? key1 ) AS ?k1 ) . ?museum shabt i s : key2 ? key2 . BIND( IRI ( ? key2 ) AS ?k2 ) . ?museum shabt i s :Has ? pRelat ion . ? pRelat ion shabt i s : r e l a t i o n ? r e l a t i o n . BIND( IRI ( ? r e l a t i o n ) AS ? r e l ) . ? pRelat ion shabt i s : value ? value . ?museum shabt i s : Show ? sRe l a t ion . ? sRe l a t ion shabt i s : r e l a t i o n ? showRelation . BIND( IRI ( ? showRelation ) AS ? sRel ) . ? sRe l a t ion shabt i s : value ? sValue . SERVICE <http://sparql.europeana.eu> { ?ProvidedCHO edm: dataProvider ? dataProvider . ?ProvidedCHO edm: provider ? provider . ?proxy ore : proxyIn ?ProvidedCHO. ?proxy ?k1 ?v1 . ?proxy ?k2 ?v2 . ?proxy ? r e l ? val . ?ProvidedCHO ? sRel ? sVal . FILTER (CONTAINS( ? v1 , " habt i " ) && CONTAINS( ? v2 , "Akhenaten " ) ) . } } GROUP BY ?ProvidedCHO ? dataProvider ? provider
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Quibell, J. Note on a tomb found at Tell er Roba. In Annales du Service des Antiquités de l’Égypte; Conseil Suprême des Antiquités Égyptiennes: Cairo, Egypt, 1902; Volume 3, pp. 245–249. [Google Scholar]
- Schneider, H.D. Shabtis: An Introduction to the History of Ancient Egyptian Funerary Statuettes with a Catalogue of the Collection of Shabtis in the National Museum of Antiquities at Leiden: Collections of the National Museum of Antiquities at Leiden; Rijksmuseum van Oudheden: Leiden, The Netherlands, 1977. [Google Scholar]
- Stewart, H.M. Egyptian Shabtis; Osprey Publishing: Oxford, UK, 1995; Volume 23. [Google Scholar]
- Petrie, S.W.M.F. Shabtis: Illustrated by the Egyptian Collection in University College, London; Aris & Phillips: London, UK, 1974. [Google Scholar]
- Janes, G.; Bangbala, T. Shabtis, A Private View: Ancient Egyptian Funerary Statuettes in European Private Collections; Cybèle: Paris, France, 2002. [Google Scholar]
- Aubert, J.F.; Aubert, L. Statuettes égyptiennes: Chaouabtis, Ouchebtis; Librairie d’Amérique et d’Orient: Paris, France, 1974. [Google Scholar]
- de Araújo, L.M. Estatuetas Funerárias Egípcias da XXI Dinastia; Fundação Calouste Gulbenkian: Lisboa, Portugal, 2003. [Google Scholar]
- Newberry, P.E. Funerary Statuettes and Model Sarcophagi; Catalogue général des Antiquités Égyptiennes du Musée du Caire; Institut français d’archéologie orientale, Service des Antiquités de l’Égypte: Cairo, Egypt, 1930. [Google Scholar]
- Bovot, J.L. Les Serviteurs Funéraires Royaux et Princiers de L’ancienne Egypte; Réunion des Musées Nationaux: Paris, France, 2003. [Google Scholar]
- Brodbeck, A.; Schlogl, H. Agyptische Totenfiguren aus Offentlichen und Privaten Sammlungen der Schweiz; OBO SA; Universitätsverlag Freiburg Schweiz, Vandenhoeck und Ruprecht Göttingen: Fribourg, Switzerland, 1990; Volume 7. [Google Scholar]
- Janes, G. The Shabti Collections: West Park Museum, Macclesfield; Olicar House Publications: Cheshire, UK, 2010. [Google Scholar]
- Janes, G.; Gallery, W.M.A. The Shabti Collections. 2. Warrington Museum & Art Gallery; Olicar House Publications: Cheshire, UK, 2011. [Google Scholar]
- Janes, G.; Moore, A. The Shabti Collections: Rochdale Arts & Heritage Service; Olicar House Publications: Cheshire, UK, 2011. [Google Scholar]
- Janes, G.; Cavanagh, K. The Shabti Collections: Stockport Museums; Olicar House Publications: Cheshire, UK, 2012. [Google Scholar]
- Manchester University Museum; Janes, G. The Shabti Collections: A Selection from Manchester Museum; Olicar House Publications: Cheshire, UK, 2012. [Google Scholar]
- World Museum Liverpool; Janes, G. The Shabti Collections: A Selection from World Museum, Liverpool; Olicar House Publications: Cheshire, UK, 2016. [Google Scholar]
- Zambanini, S.; Kampel, M. Coarse-to-fine correspondence search for classifying ancient coins. In Proceedings of the Asian Conference on Computer Vision, Daejeon, Korea, 5–9 November 2012; Springer: Berlin, Germany, 2012; pp. 25–36. [Google Scholar]
- Aslan, S.; Vascon, S.; Pelillo, M. Ancient coin classification using graph transduction games. In Proceedings of the 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino FR, Italy, 22–24 October 2018; pp. 127–131. [Google Scholar]
- Aslan, S.; Vascon, S.; Pelillo, M. Two sides of the same coin: Improved ancient coin classification using Graph Transduction Games. Pattern Recognit. Lett. 2020, 131, 158–165. [Google Scholar] [CrossRef]
- Anwar, H.; Zambanini, S.; Kampel, M.; Vondrovec, K. Ancient coin classification using reverse motif recognition: Image-based classification of roman republican coins. IEEE Signal Process. Mag. 2015, 32, 64–74. [Google Scholar] [CrossRef]
- Mirza-Mohammadi, M.; Escalera, S.; Radeva, P. Contextual-guided bag-of-visual-words model for multi-class object categorization. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Münster, Germany, 2–4 September 2009; Springer: Berlin, Germany, 2009; pp. 748–756. [Google Scholar]
- Anwar, H.; Anwar, S.; Zambanini, S.; Porikli, F. CoinNet: Deep Ancient Roman Republican Coin Classification via Feature Fusion and Attention. arXiv 2019, arXiv:1908.09428. [Google Scholar]
- Llamas, J.; M Lerones, P.; Medina, R.; Zalama, E.; Gómez-García-Bermejo, J. Classification of architectural heritage images using deep learning techniques. Appl. Sci. 2017, 7, 992. [Google Scholar] [CrossRef] [Green Version]
- Makridis, M.; Daras, P. Automatic classification of archaeological pottery sherds. J. Comput. Cult. Herit. (JOCCH) 2013, 5, 1–21. [Google Scholar] [CrossRef]
- Hamdia, K.M.; Ghasemi, H.; Zhuang, X.; Alajlan, N.; Rabczuk, T. Computational machine learning representation for the flexoelectricity effect in truncated pyramid structures. Comput. Mater. Contin. 2019, 59, 1. [Google Scholar] [CrossRef] [Green Version]
- Hamdia, K.M.; Ghasemi, H.; Bazi, Y.; AlHichri, H.; Alajlan, N.; Rabczuk, T. A novel deep learning based method for the computational material design of flexoelectric nanostructures with topology optimization. Finite Elem. Anal. Des. 2019, 165, 21–30. [Google Scholar] [CrossRef]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 99, pp. 1150–1157. [Google Scholar]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. arXiv 2016, arXiv:1612.08242. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Isaac, A.; Haslhofer, B. Europeana linked open data (data.europeana.eu). Semant. Web 2013, 4, 291–297. [Google Scholar] [CrossRef]
- Gruber, T.R. Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum.-Comput. Stud. 1995, 43, 907–928. [Google Scholar] [CrossRef]
- Guber, T. A Translational Approach to Portable Ontologies. Knowl. Acquis. 1993, 5, 199–229. [Google Scholar] [CrossRef]
- World Wide Web Consortium. OWL 2 Web Ontology Language Document Overview; World Wide Web Consortium (W3C), Massachusetts Institute of Technology (MIT): Cambridge, MA, USA, 2012. [Google Scholar]
- Baader, F. The Description Logic Handbook: Theory, Implementation and Applications; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Lassila, O.; Swick, R.R. Resource Description Framework (RDF) Model and Syntax Specification; World Wide Web Consortium (W3C), Massachusetts Institute of Technology (MIT): Cambridge, MA, USA, 1999. [Google Scholar]
- Gardiner, A.H. Egyptian Grammar. Being an Intr. to the Study of Hieroglyphs; Oxford University Press: Oxford, UK, 1969. [Google Scholar]
- Montabone, S.; Soto, A. Human detection using a mobile platform and novel features derived from a visual saliency mechanism. Image Vis. Comput. 2010, 28, 391–402. [Google Scholar] [CrossRef]
- VOCUS FTS. A Visual Attention System for Object Detection and Goal Directed Search. Ph.D. Thesis, University of Bonn, Bown, Germany, 2005. [Google Scholar]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Knublauch, H.; Horridge, M.; Musen, M.A.; Rector, A.L.; Stevens, R.; Drummond, N.; Lord, P.W.; Noy, N.F.; Seidenberg, J.; Wang, H. The Protege OWL Experience; OWLED: Galway, Ireland, 2005. [Google Scholar]
- Apache Jena Server. Apache. Available online: https://jena.apache.org/ (accessed on 11 September 2020).
- Prud’hommeaux, E.; Buil-Aranda, C. SPARQL 1.1 federated query. W3C Recomm. 2013, 21, 113. [Google Scholar]
- Noble, F.K. Comparison of OpenCV’s feature detectors and feature matchers. In Proceedings of the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 28–30 November 2016; pp. 1–6. [Google Scholar]
- Merkel, D. Docker: Lightweight linux containers for consistent development and deployment. Linux J. 2014, 2014, 2. [Google Scholar]
Institution | Data Property | Value |
---|---|---|
UCL_Museum | dataProvider | “UCL Museums” |
UCL_Museum | provider | “AthenaPlus” |
UCL_Museum | key1 | “http://purl.org/dc/elements/1.1/type” |
UCL_Museum | key2 | “http://purl.org/dc/elements/1.1/description” |
Institution | Assertion | Object Property | Data Properties |
---|---|---|---|
UCL_Museum | Has | Relation1 | relation = “http://purl.org/dc/elements/1.1/identifier” value = “id” |
UCL_Museum | Has | Relation2 | relation = “http://purl.org/dc/elements/1.1/title” value = “title” |
UCL_Museum | Has | Relation3 | relation = “http://purl.org/dc/elements/1.1/description” value = “description” |
UCL_Museum | Has | Relation4 | relation = “http://purl.org/dc/terms/created” value = “creation” |
UCL_Museum | Has | Relation6 | relation = “http://purl.org/dc/elements/1.1/type” value = “type” |
UCL_Museum | Show | Media1 | relation = “http://www.europeana.eu/schemas/edm/isShownBy” value = “mediaURL” |
UCL_Museum | Show | Media2 | relation = “http://www.europeana.eu/schemas/edm/isShownAt” value = “URL” |
Ahmose | Akhenaten | Akheqa | Amen-em-hat-pa-mesha | Amen-em-ipet | Amen-em-wiya | Amen-hotep | Amen-niwt-nakht |
---|---|---|---|---|---|---|---|
Amenemipt | Amenemope | Amenophis II | Amenophis III (Limestone) | Amenophis III (Wood) | Anchef-en-amun | Ankh-hor | Ankh-wahibre |
Anlamani | Apries | Artaha | Aspelta | Ast-em-khebit | Ay | Bak-en-renef | Chemay |
Denitptah | Djed-hor | Djed-khonsu | Djed-khonsu-iwef-ankh | Djed-montu-iwef-ankh | Djed-mut | Djed-mut-iwef-ankh | Djed-ptah-iwef-ankh |
Hatshepsut | Heka-em-saf | Hem-hotep | Henut-tawy | Henut-tawy (Queen) | Henut-wedjat | Henut-wert | Henutmehyt |
Her-webkhet | Hor | Hor-em-heb | Hor-ir-aa | Hor-Wedja | Horkhebit | Horudja | Huy (Faience) |
Huy (Stone) | Iset-em-Khebit | Isis | Iy-er-niwt-ef | Kemehu | Khaemweset | Khay | Maa-em-heb |
Maatkara | Madiqan | Mahuia | Masaharta | May | Mehyt-weskhet | Merneptah | Mery-Sekhmet |
Mut-nefret | Nakht-nes-tawy | Necho II | Nectabeno I | Nectabeno II | Nefer-hotep | Neferibre-saneith | Nefertity |
Neferu-Ptah | Nepherites-I | Nes-Amen-em-Opet | Nes-ankhef-en-Maat | Nes-ba-neb-djed | Nes-pa-heran | Nes-pa-ka-shuty | Nes-pa-nefer-her |
Nes-ta-hi | Nes-ta-neb-tawy | Nes-ta-nebt-Isheru | Nesy-Amun | Nesy-Khonsu | Nesy-per-nub | Osorkon II | Pa-di-Amen-nesut-tawy |
Pa-di-hor-Mehen | Pa-di-Neith | Pa-hem-neter | Pa-her-mer | Pa-kharu | Pa-khonsu | Pa-nefer-nefer | Pa-shed-Khonsu |
Pa-shen | Padiast | Padimayhes | Pakhaas | Pamerihu | Paser | Pashed | Pashedu |
Pedi-Shetyt | Pen-amun | Petosiris | Pinudjem I | Pinudjem II | Psamtek | Psamtek I | Psamtek Iahmes |
Psamtek-mery-ptah | Psusennes I (Bronze) | Psusennes I (Faience) | Qa-mut | Qenamun | Ramesses II | Ramesses III (Alabaster) | Ramesses III (Stone) |
Ramesses III (Wood) | Ramesses IV | Ramesses IX | Ramesses VI | Ramesses-heru | Ramessu | Sa-iset | Sati |
Sedjem-ash-Hesymeref | Senkamanisken | Sennedjem | Sety I (Faience) | Sety I (Wood) | Shed-su-Hor | Siptah | Suneru |
Ta-shed-amun | Ta-shed-khonsu | Tabasa | Taharqa | Takelot I | Tayu-heret | Tent-Osorkon | Thutmose III |
Thutmose IV | Tjai-hor-pa-ta | Tjai-ne-hebu | Tjai-nefer | Tjay | Tutankhamen (Faience) | Tutankhamen (Wood) | User-hat-mes |
User-maat-re-nakht | Wahibre | Wahibre-em-kheb | Wedja-Hor | Wendjebauendjed | Yuya |
Detected | XII | XVIII | Late XVIII | XVIII-XIX | Early XIX | XIX | XIX-XX | XX | XX-XXI | XXI | XXI-XXII | XXII | XXV | Early XXVI | XXVI | XXVI-XXX | XXIX | XXX | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Real | |||||||||||||||||||
XII | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
XVIII | 0.0 | 0.92 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.08 | 0.0 | 0.0 | |
late XVIII | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
XVIII-XIX | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
early XIX | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
XIX | 0.0 | 0.05 | 0.0 | 0.0 | 0.0 | 0.84 | 0.0 | 0.0 | 0.0 | 0.09 | 0.0 | 0.0 | 0.0 | 0.0 | 0.02 | 0.0 | 0.0 | 0.0 | |
XIX-XX | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
XX | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.22 | 0.0 | 0.67 | 0.0 | 0.11 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
XX-XXI | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
XXI | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.02 | 0.0 | 0.0 | 0.01 | 0.9 | 0.05 | 0.01 | 0.0 | 0.0 | 0.02 | 0.0 | 0.0 | 0.0 | |
XXI-XXII | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
XXII | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.06 | 0.0 | 0.94 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
XXV | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
early XXVI | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5 | 0.0 | 0.0 | 0.0 | |
XXVI | 0.0 | 0.02 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.88 | 0.06 | 0.04 | 0.0 | |
XXVI-XXX | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | |
XXIX | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | |
XXX | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.25 | 0.0 | 0.0 | 0.75 |
Detected | Middle Kingdom | New Kingdom | Third Intermediate Period | Late Period | |
---|---|---|---|---|---|
Real | |||||
Middle Kingdom | 1.0 | 0.0 | 0.0 | 0.0 | |
New Kingdom | 0.0 | 0.91 | 0.06 | 0.03 | |
Third Intermediate Period | 0.0 | 0.01 | 0.97 | 0.01 | |
Late Period | 0.0 | 0.01 | 0.0 | 0.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duque Domingo, J.; Gómez-García-Bermejo, J.; Zalama, E. Egyptian Shabtis Identification by Means of Deep Neural Networks and Semantic Integration with Europeana. Appl. Sci. 2020, 10, 6408. https://doi.org/10.3390/app10186408
Duque Domingo J, Gómez-García-Bermejo J, Zalama E. Egyptian Shabtis Identification by Means of Deep Neural Networks and Semantic Integration with Europeana. Applied Sciences. 2020; 10(18):6408. https://doi.org/10.3390/app10186408
Chicago/Turabian StyleDuque Domingo, Jaime, Jaime Gómez-García-Bermejo, and Eduardo Zalama. 2020. "Egyptian Shabtis Identification by Means of Deep Neural Networks and Semantic Integration with Europeana" Applied Sciences 10, no. 18: 6408. https://doi.org/10.3390/app10186408
APA StyleDuque Domingo, J., Gómez-García-Bermejo, J., & Zalama, E. (2020). Egyptian Shabtis Identification by Means of Deep Neural Networks and Semantic Integration with Europeana. Applied Sciences, 10(18), 6408. https://doi.org/10.3390/app10186408