Development and Application of a Motion Analysis Protocol for the Kinematic Evaluation of Basic and Functional Hand and Finger Movements Using Motion Capture in a Clinical Setting—A Repeatability Study
Abstract
:Featured Application
Abstract
1. Introduction
- One marker per segment—linear placement on the joint head (FM1);
- Two markers per segment—linear placement proximally and distally on the segment (FM2);
- Three markers per segment—noncollinear triangular-shaped placement (FM3a);
- Rigid marker cluster consisting of three noncollinear markers fixed on a base (FM3b).
2. Materials and Methods
2.1. Experimental Setup Repeatability Study
2.2. Movement Tasks
2.3. Marker Placement
- Freedom in movement performance,
- Simplicity of marker position identification,
- Possibility to measure all finger and hand joints simultaneously,
- Visibility by at least two cameras during the entire movement,
- Small number of markers still allowing an analysis of all relevant degrees of freedom (DOF), and
- Application for simple and complex movements possible.
2.4. Biomechanical Model
2.4.1. Finger joints (MCP, PIP, and DIP)
2.4.2. Wrist and Thumb Joints (TMC, MCP, and IP)
2.4.3. Radio-Ulnar Joint
2.5. Repeatability of the Maximum Range of Motion
2.6. Comparison FM1 vs. FM2
3. Results
3.1. Comparison FM1 vs. FM2
3.2. Repeatability of the Maximum Range of Motion
4. Discussion
4.1. Comparison FM1 vs. FM2
4.2. Repeatability of the Maximal Joint Angles and the ROM
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rau, G.; Disselhorst-Klug, C.; Schmidt, R. Movement biomechanics goes upwards: From the leg to the arm. J. Biomech. 2000, 33, 1207–1216. [Google Scholar] [CrossRef]
- Murgia, A.; Kyberd, P.; Chappell, P.; Light, C. Marker placement to describe the wrist movement during activities of daily living in cyclical tasks. Clin. Biomech. 2004, 19, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Kontaxis, A.; Cutti, A.; Johnson, G.; Veeger, H. A framework for the definition of standardized protocols for measuring upper-extremity kinematics. Clin. Biomech. 2009, 24, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Goislard de Monsabert, B.; Visser, J.; Vigouroux, L.; Van der Helm, F.; Veeger, H. Comparison of three local frame definitions for the kinematic analysis of the fingers and the wrist. J. Biomech. 2014, 47, 2590–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reissner, L.; Fischer, G.; List, R.; Giovanoli, P.; Calcagni, M. Assessment of hand function during activities of daily living using motion tracking cameras: A systematic review. Proc. Inst. Mech. Eng. H 2019, 233, 764–783. [Google Scholar] [CrossRef]
- Cerveri, P.; De Momi, E.; Lopomo, N.; Baud-Bovy, G.; Barros, R.; Ferrigno, G. Finger kinematic modeling and real-time hand motion estimation. Ann. Biomed. Eng. 2007, 35, 1989–2002. [Google Scholar] [CrossRef]
- Anglin, C.; Wyss, U. Review of arm motion analyses. Proc. Inst. Mech. Eng. H 2000, 214, 541–555. [Google Scholar] [CrossRef]
- Metcalf, C.; Notley, S.; Chappell, P.; Burridge, J.; Yule, V. Validation and application of a computational model for wrist and hand movements using surface markers. IEEE Trans. Biomed. Eng. 2008, 55, 1199–1210. [Google Scholar] [CrossRef]
- Coupier, J.; Hamoudi, S.; Telese-Izzi, S.; Feipel, V.; Rooze, M.; Van Sint Jan, S. A novel method for in-vivo evaluation of finger kinematics including definition of healthy motion patterns. Clin. Biomech. 2016, 31, 47–58. [Google Scholar] [CrossRef]
- Lee, K.; Jung, M. Quantitative comparison of marker attachment methods for hand motion analysis. Int. J. Occup. Saf. Ergon. 2015, 21, 30–38. [Google Scholar] [CrossRef]
- Carpinella, I.; Mazzoleni, P.; Rabuffetti, M.; Thorsen, R.; Ferrarin, M. Experimental protocol for the kinematic analysis of the hand: Definition and repeatability. Gait Posture 2006, 23, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Rash, G.; Belliappa, P.; Wachowiak, M.; Somia, N.; Gupta, A. A demonstration of the validity of a 3-D video motion analysis method for measuring finger flexion and extension. J. Biomech. 1999, 32, 1337–1341. [Google Scholar] [CrossRef]
- Sancho-Bru, J.; Jarque-Bou, N.; Vergara, M.; Pérez-González, A. Validity of a simple videogrammetric method to measure the movement of all hand segments for clinical purposes. Proc. Inst. Mech. Eng. H 2014, 228, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Degeorges, R.; Parasie, J.; Mitton, D.; Imbert, N.; Goubier, J.; Lavaste, F. Three-dimensional rotations of human three-joint fingers: An optoelectronic measurement. Preliminary results. Surg. Radiol. Anat. 2005, 27, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Warlow, O.M.; Lawson, S.E. A technique for motion capture of the finger using functional joint centres and the effect of calibration range of motion on its accuracy. Proc. Inst. Mech. Eng. H 2012, 226, 360–367. [Google Scholar] [CrossRef]
- Murphy, M.; Sunnerhagen, K.; Johnels, B.; Willén, C. Three-dimensional kinematic motion analysis of a daily activity drinking from a glass: A pilot study. J. Neuro Eng. Rehabil. 2006, 3. [Google Scholar] [CrossRef] [Green Version]
- Gander, W.; Hrebicek, J. Least squares fit of point clouds. In Solving Problems in Scientific Computing Using Maple and MATLAB®, 3rd ed.; Springer: Berlin, Germany, 1997; pp. 339–349. [Google Scholar]
- Metcalf, C.D.; Notley, S.V. Modified kinematic technique for measuring pathological hyperextension and hypermobility of the interphalangeal joints. IEEE Trans. Biomed. Eng. 2011, 58, 1224–1231. [Google Scholar] [CrossRef]
- Grood, E.; Suntay, W. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef]
- Wu, G.; van der Helm, F.; Veeger, H.; Makhsous, M.; van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef] [PubMed]
- List, R.; Gulay, T.; Stoop, M.; Lorenzetti, S. Kinematics of the trunk and the lower extremities during restricted and unrestricted squats. J. Strength Cond. Res. 2013, 27, 1529–1538. [Google Scholar] [CrossRef]
- Woltring, H.J. 3-D attitude representation of human joints: A standardization proposal. J. Biomech. 1994, 27, 1399–1414. [Google Scholar] [CrossRef]
- de Vet, H.C.; Terwee, C.B.; Knol, D.L.; Bouter, L.M. When to use agreement versus reliability measures. J. Clin. Epidemiol. 2006, 59, 1033–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stratford, P.W.; Goldsmith, C.H. Use of the standard error as a reliability index of interest: An applied example using elbow flexor strength data. Phys. Ther. 1997, 77, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [PubMed]
- McGinley, J.L.; Baker, R.; Wolfe, R.; Morris, M.E. The reliability of three-dimensional kinematic gait measurements: A systematic review. Gait Posture 2009, 29, 360–369. [Google Scholar] [CrossRef]
- Ryu, J.H.; Miyata, N.; Kouchi, M.; Mochimaru, M.; Lee, K.H. Analysis of skin movement with respect to flexional bone motion using MR images of a hand. J. Biomech. 2006, 39, 844–852. [Google Scholar] [CrossRef]
- Metcalf, C.D.; Phillips, C.; Forrester, A.; Glodowski, J.; Simpson, K.; Everitt, C.; Darekar, A.; King, L.; Warwick, D.; Dickinson, A.S. Quantifying soft tissue artefacts and imaging variability in motion capture of the fingers. Ann. Biomed. Eng. 2020, 48, 1551–1561. [Google Scholar] [CrossRef] [Green Version]
- Woodworth, J.A.; McCullough, M.B.; Grosland, N.M.; Adams, B.D. Impact of simulated proximal interphalangeal arthrodeses of all fingers on hand function. J. Hand Surg. Am. 2006, 31, 940–946. [Google Scholar] [CrossRef]
- Zhang, X.; Braido, P.; Lee, S.-W.; Hefner, R.; Redden, M. A normative database of thumb circumduction in vivo: Center of rotation and range of motion. Hum. Factors 2005, 47, 550–561. [Google Scholar] [CrossRef]
- Speirs, A.D.; Small, C.F.; Bryant, J.T.; Pichora, D.R.; Zee, B.Y. Three-dimensional metacarpophalangeal joint kinematics using two markers on the phalanx. Proc. Inst. Mech. Eng. H 2001, 215, 415–419. [Google Scholar] [CrossRef]
- Reissner, L.; Fischer, G.; List, R.; Taylor, W.R.; Giovanoli, P.; Calcagni, M. Minimal detectable difference of the finger and wrist range of motion: Comparison of goniometry and 3D motion analysis. J. Orthop. Surg. Res. 2019, 14, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Marker Name * | Segment | Placement Description | |
---|---|---|---|
EL, EM, EUL | Elbow | Lateral epicondyle of the humerus, between the medial epicondyle of the humerus and the olecranon, and on the forearm, approx. 3 cm distal to the olecranon of the ulna | |
PSU, PSR UAU, UAR | Forearm | Ulna styloid process and radial styloid process Proximal to PSU on the ulna, proximal to PSR on the radius | |
CMC3, CMC5 | Palm | Base of metacarpal bone III and V | |
MC1A, MC1B, MC1C | Metacarpal I | Triangular shaped position of the three markers with MC1B proximal to the metacarpal joint I | |
D1A, D1B, D1C | Proximal phalanx I | Triangular shaped position of the three markers with D1B proximal to the interphalangeal joint I | |
D1D, D1E, D1F | Distal phalanx I | Triangular shaped position of the three markers with D1F on the distal part of the fingertip | |
FM1: 1 marker per segment | D2A–D2D | Palm (A) | A: on the metacarpal joint |
D3A–D3D | Proximal phalanges II–V (A,B) | B: on the proximal interphalangeal joint | |
D4A–D4D | Intermediate phalanges II–V (B,C) | C: on the distal interphalangeal joint | |
D5A–D5D | Distal phalanges II–V (C,D) | D: on the distal and dorsal part of the fingertip | |
FM2: 2 markers per segment | MC2 MC3 MC4 MC5 D2A–D2F D3A–D3F D4A–D4F D5A–D5F | Palm Proximal phalanges II–V (A,B) Intermediate phalanges II–V (C,D) Distal phalanges II–V (E,F) | MC: Proximal to the metacarpal joint II–V A: Distal to the metacarpal joint, dorsal on the proximal phalanx B: Proximal to the proximal interphalangeal joint, dorsal on the proximal phalanx C: Distal to the proximal interphalangeal joint, dorsal on the medial phalanx D: Proximal to the distal interphalangeal joint, dorsal on the medial phalanx E: Distal to the distal interphalangeal joint, dorsal on the distal phalanx F: On the distal and dorsal part of the fingertip |
Joint | Analyzed DOF (Sign Conventions) | Kinematic Approach | Joint Center/Axis Computation 1 | Functional Joint Model |
---|---|---|---|---|
Radioulnar | Pronation(+)/supination(−) | Helical angles | Longitudinal forearm axis: combined | - |
Wrist | Flexion(+)/extension(−) Radial(+)/ulnar(−) deviation | Grood and Suntay | Joint center: functional Joint flexion axis: functional | Ball and socket joint Hinge joint |
TMC | Flexion(+)/extension(−) Abduction(+)/adduction(−) Eversion(+)/inversion(−) | Grood and Suntay | Joint center: functional Joint flexion axis: functional | Ball and socket joint Hinge joint |
MCP1 | Flexion(+)/extension(−) | Grood and Suntay | Joint flexion axis: functional Joint center: combined | Hinge joint |
IP | Flexion(+)/extension(−) | Grood and Suntay | Joint flexion axis: functional Joint center: combined | Hinge joint |
MCP II–V | Flexion(+)/extension(−) Abduction(+)/adduction(−) | Vectors between the markers | ||
PIP II–V | Flexion(+)/extension(− | Vectors between the markers | ||
DIP II–V | Flexion(+)/extension(−) | Vectors between the markers |
Joint | Segmental Coordinate Axes 1,3 | Joint Coordinate Axes [19] 2,3 | |
---|---|---|---|
Distal Segment | Proximal Segment | ||
Radioulnar | e: longitudinal forearm axis, directional vector from fcwrist to the midpoint between the elbow markers | ||
Wrist | i = fawrist j = Lpalm × fawrist k = i × j npalm = (MC2-CMC3) × (MC4-CMC3) gcMCP3 = MC3 + (npalm * 10 mm) Lpalm = fcwrist—gcMCP3 | I = fawrist J = Lforearm × fawrist K = I × J Lforearm: longitudinal forearm axis (directional vector from fcwrist to the centroid of the elbow markers) | e1 = I e2 = e1 × e3/(|e1 × e3|) = FL e3 = k |
TMC | i = j × k j = k × faIP k = (fcTMC—fcMCP1) | I = i J = j K = k | e1 = I e2 = e1 × e3/(|e1 × e3|) = FL e3 = k |
MCP1 | i = faIP j = Lprox_phalanx1 × i k = i × j Lprox_phalanx1 = fcMCP1—fcIP | I = faIP J = Lmetacarpal1 × I K = I × J Lmetacarpal1 = fcTMC—fcMCP1 | e1 = I e2 = e1 × e3/(|e1 × e3|) = FL e3 = k |
IP | i = faIP j = Ldist_phalanx1 × i k = i × j Ldist_phalanx1 = fcIP—D1FT ndist_phalanx1: normal vector to the plane of the distal phalanx I containing the markers D1D, D1E, D3F D1FT: tip of the thumb, 3 mm palmar to marker D1F (palmar direction defined by ndist_phalanx1) | I = faIP J = Lprox_phalanx1 × I K = I × J Lprox_phalanx1 = fcMCP1—fcIP | e1 = I e2 = e1 × e3/(|e1 × e3|) = FL e3 = k |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, G.; Jermann, D.; List, R.; Reissner, L.; Calcagni, M. Development and Application of a Motion Analysis Protocol for the Kinematic Evaluation of Basic and Functional Hand and Finger Movements Using Motion Capture in a Clinical Setting—A Repeatability Study. Appl. Sci. 2020, 10, 6436. https://doi.org/10.3390/app10186436
Fischer G, Jermann D, List R, Reissner L, Calcagni M. Development and Application of a Motion Analysis Protocol for the Kinematic Evaluation of Basic and Functional Hand and Finger Movements Using Motion Capture in a Clinical Setting—A Repeatability Study. Applied Sciences. 2020; 10(18):6436. https://doi.org/10.3390/app10186436
Chicago/Turabian StyleFischer, Gabriella, Diana Jermann, Renate List, Lisa Reissner, and Maurizio Calcagni. 2020. "Development and Application of a Motion Analysis Protocol for the Kinematic Evaluation of Basic and Functional Hand and Finger Movements Using Motion Capture in a Clinical Setting—A Repeatability Study" Applied Sciences 10, no. 18: 6436. https://doi.org/10.3390/app10186436
APA StyleFischer, G., Jermann, D., List, R., Reissner, L., & Calcagni, M. (2020). Development and Application of a Motion Analysis Protocol for the Kinematic Evaluation of Basic and Functional Hand and Finger Movements Using Motion Capture in a Clinical Setting—A Repeatability Study. Applied Sciences, 10(18), 6436. https://doi.org/10.3390/app10186436