The Protective Effect of Static Magnetic Fields with Different Magnetic Inductions against Fluoride Toxicity Is Related to the NRF2 Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. RNA Extraction
2.3. Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR) Assay
2.4. Apoptosis Assay
2.5. Statistical Analyses
3. Results
3.1. Transcriptional Activity of the Cellular Antioxidant System-Related Genes
3.2. Transcriptional Activity of the Apoptosis-Related Genes
3.3. Apoptosis Assay
3.4. Relationships between Oxidative Stress and the Apoptosis Process
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Wu, J.; Cheng, M.; Liu, Q.; Yang, J.; Wu, S.; Lu, X.; Jin, C.; Ma, H.; Cai, Y. Protective Role of tert-Butylhydroquinone Against Sodium Fluoride-Induced Oxidative Stress and Apoptosis in PC12 Cells. Cell Mol. Neurobiol. 2015, 35, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, H.; Ba, Y.; Cheng, X.M.; Cui, L.X. Effect of oxidative stress on fluoride-induced apoptosis in primary cultured Sertoli cells of rats. Int. J. Environ. Health Res. 2015, 25, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species—Sources, functions, oxidative damage. Pol. Merkur Lekarski. 2020, 48, 124–127. [Google Scholar]
- Tan, S.N.; Sim, S.P.; Khoo, A.S. Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma. Cell Biosci. 2016, 6, 35. [Google Scholar] [CrossRef] [Green Version]
- Ozben, T. Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharm. Sci. 2007, 96, 2181–2196. [Google Scholar] [CrossRef] [PubMed]
- Ghodbane, S.; Lahbib, A.; Sakly, M.; Abdelmelek, H. Bioeffects of static magnetic fields: Oxidative stress, genotoxic effects, and cancer studies. Biomed. Res. Int. 2013, 2013, 602987. [Google Scholar] [CrossRef] [Green Version]
- Kheifets, L.I.; Greenberg, R.S.; Neutra, R.R.; Hester, G.L.; Poole, C.L.; Rall, D.P.; Lundell, G. Electric and magnetic fields and cancer: Case study. Am. J. Epidemiol. 2001, 154, S50–S59. [Google Scholar] [CrossRef] [Green Version]
- Albuquerque, W.W.; Costa, R.M.; de Fernandes, T.S.; Porto, A.L. Evidences of the static magnetic field influence on cellular systems. Prog. Biophys. Mol. Biol. 2016, 121, 16–28. [Google Scholar] [CrossRef]
- Coballase-Urrutia, E.; Navarro, L.; Ortiz, J.L.; Verdugo-Díaz, L.; Gallardo, J.M.; Hernández, M.E.; Estrada-Rojo, F. Static Magnetic Fields Modulate the Response of Different Oxidative Stress Markers in a Restraint Stress Model Animal. Biomed. Res. Int. 2018, 2018, 3960408. [Google Scholar] [CrossRef]
- Sirmatel, O.; Sert, C.; Sirmatel, F.; Selek, S.; Yokus, B. Total antioxidant capacity, total oxidant status and oxidative stress index in the men exposed to 1.5 T static magnetic field. Gen. Physiol. Biophys. 2007, 26, 86–90. [Google Scholar]
- Kimsa-Dudek, M.; Synowiec-Wojtarowicz, A.; Derewniuk, M.; Gawron, S.; Paul-Samojedny, M.; Kruszniewska-Rajs, C.; Pawłowska-Góral, K. Impact of fluoride and a static magnetic field on the gene expression that is associated with the antioxidant defense system of human fibroblasts. Chem. Biol. Interact. 2018, 287, 13–19. [Google Scholar] [CrossRef]
- Kimsa-Dudek, M.; Synowiec-Wojtarowicz, A.; Derewniuk, M.; Paul-Samojedny, M.; Pawłowska-Góral, K. The effect of simultaneous exposure of human fibroblasts to fluoride and moderate intensity static magnetic fields. Int. J. Radiat. Biol. 2019, 95, 1581–1587. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Yadav, A.; Singh, S.V.; Mishra, P.; Rath, S.K. Isoniazid induces apoptosis: Role of oxidative stress and inhibition of nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Life Sci. 2018, 199, 23–33. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, H.; Xu, F.; Zhang, Y.; Li, Z.; Ju, X.; Wang, L. Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signalling. Food Chem. 2020, 325, 126865. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The Anti-Inflammatory and Anti-Oxidant Mechanisms of the Keap1/Nrf2/ARE Signaling Pathway in Chronic Diseases. Aging Dis. 2019, 10, 637–651. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Nie, X.; Chen, X.; Yin, L.; Luo, J.; Sun, L.; Wan, C.; Jiang, S. Nrf2 Signaling Elicits a Neuroprotective Role Against PFOS-mediated Oxidative Damage and Apoptosis. Neurochem. Res. 2018, 43, 2446–2459. [Google Scholar] [CrossRef]
- Zhang, W.; Li, M.; Li, N.; Liu, Z. Regulation of Keap-1/Nrf2 Signaling Pathway Is Activated by Oxidative Stress in Patients with Premature Rupture of Membranes. Med. Sci. Monit. 2020, 26, e921757. [Google Scholar] [CrossRef]
- Gawron, S.; Glinka, M.; Wolnik, T. Magnetyczna komora badawcza dedykowana do hodowli komórek. Zeszyty Problemowe-Maszyny Elektryczne 2012, 4, 11–16. [Google Scholar]
- Glinka, M.; Gawron, S.; Sieroń, A.; Pawłowska-Góral, K.; Cieślar, G.; Sieroń-Stołtny, K. Test chambers for cell culture in static magnetic field. J. Magn. Mater. 2013, 331, 208–215. [Google Scholar] [CrossRef]
- Dini, L.; Abbro, L. Bioeffects of Moderate-Intensity Static Magnetic Fields on Cell Cultures. Micron 2005, 36, 195–217. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska-Góral, K.; Kimsa-Dudek, M.; Synowiec-Wojtarowicz, A.; Orchel, J.; Glinka, M.; Gawron, S. Effect of static magnetic fields and phloretin on antioxidant defense system of human fibroblasts. Environ. Sci. Pollut. Res. Int. 2016, 23, 14989–14996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimsa-Dudek, M.; Synowiec-Wojtarowicz, A.; Krawczyk, A.; Kruszniewska-Rajs, C.; Gawron, S.; Paul-Samojedny, M.; Gola, J. Anti-apoptotic effect of a static magnetic field in human cells that had been treated with sodium fluoride. J. Environ. Sci. Health A Tox. Hazard. Substain. Environ. Eng. 2020, 1–8. [Google Scholar] [CrossRef]
- Dhar, V.; Bhatnagar, M. Physiology and toxity of fluoride. Indian J. Dent. Res. 2009, 20, 350–355. [Google Scholar] [CrossRef]
- Whitford, G.M. Acute toxity of ingested fluride. Monogr. Oral Sci. 2011, 22, 66–80. [Google Scholar]
- Wei, W.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Li, Y.; Wamg, X.; Zhao, L. A mini review of fluoride-induced apoptotic pathways. Environ. Sci. Pollut. Res. Int. 2018, 25, 33926–33935. [Google Scholar] [CrossRef]
- Xu, X.; Lai, Y.; Hua, Z.C. Apoptosis and apoptotic body: Disease message and therapeutic target potentials. Biosci. Rep. 2019, 39, BSR20180992. [Google Scholar] [CrossRef] [Green Version]
- Turkmen, K. Inflammation, oxidative stress, apoptosis, and autophagy in diabetes mellitus and diabetic kidney disease: The Four Horsemen of the Apocalypse. Int. Urol. Nephrol. 2017, 49, 837–844. [Google Scholar] [CrossRef]
- Méndez-Armenta, M.; Nava-Ruiz, C.; Juárez-Rebollar, D.; Rodriguez-Martinez, E.; Gómez, P.Y. Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid. Med. Cell. Longev. 2014, 2014, 293689. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Javad-Moosavi, S.A.; Reiter, R.J.; Yarahmadi, R.; Ghaznavi, H.; Mehrzadi, S. Oxidative/nitrosative stress, autophagy and apoptosis as therapeutic targets of melatonin in idiopathic pulmonary fibrosis. Expert Opin. Ther. Targets 2018, 22, 1049–1061. [Google Scholar] [CrossRef]
- Blomgren, K.; Hagberg, H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic. Biol. Med. 2006, 40, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Liu, S.; Wang, C.; Wang, F.; Song, Y.; Yan, N.; Xi, S.; Liu, Z.; Sun, G. JNK and NADPH oxidase involved in fluoride-induced oxidative stress in BV-2 microglia cells. Mediators Inflamm. 2013, 2013, 895975. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.P.; Tiwari, S.K.; Shaik, A.P.; Alsaeed, A.; Sultana, A.; Reddy, P.K. Effect of sodium fluoride on neuroimmunological parameters, oxidative stress and antioxidative defenses. Toxicol. Mech. Methods 2014, 24, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Luo, Q.; Cui, H.; Deng, H.; Kuang, P.; Liu, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; et al. Sodium fluoride causes oxidative stress and apoptosis in the mouse liver. Aging 2017, 9, 1623–1639. [Google Scholar] [CrossRef] [Green Version]
- Ameeramja, J.; Perumal, E. Possible Modulatory Effect of Tamarind Seed Coat Extract on Fluoride-Induced Pulmonary Inflammation and Fibrosis in Rats. Inflammation 2018, 41, 886–895. [Google Scholar] [CrossRef]
- Zuo, H.; Chen, L.; Kong, M.; Qiu, L.; Lü, P.; Wu, P.; Yang, Y.; Chen, K. Toxic effects of fluoride on organisms. Life Sci. 2018, 198, 18–24. [Google Scholar] [CrossRef]
- Grandjean, P. Developmental fluoride neurotoxicity: An updated review. Environ. Health 2019, 18, 110. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.M.; Ahmad, I.; Haqqi, T.M. Nrf2/ARE pathway attenuates oxidative and apoptotic response in human osteoarthritis chondrocytes by activating ERK1/2/ELK1-P70S6K-P90RSK signaling axis. Free Radic. Biol. Med. 2018, 116, 159–171. [Google Scholar] [CrossRef]
- Pan, H.; Wang, H.; Zhu, L.; Wang, X.; Cong, Z.; Sun, K.; Fan, Y. The involvement of Nrf2-ARE pathway in regulation of apoptosis in human glioblastoma cell U251. Neurol. Res. 2013, 35, 71–78. [Google Scholar] [CrossRef]
- Bonay, M.; Deramaudt, T.B. Nrf2: New insight in cell apoptosis. Cell Death Dis. 2015, 6, e1897. [Google Scholar] [CrossRef] [Green Version]
C | F | F + SMF1 | F + SMF2 | F + SMF3 | * p | |
---|---|---|---|---|---|---|
mRNA Copy Numbers/µg RNA | ||||||
SOD1 (superoxide dismutase 1) | 1,359,583 ± 114,105 | 1,438,688 ± 177,946 | 1,343,500 ± 19,0836 | 1,239,125 ± 163,142 | 1,764,375 ± 183,910 | 0.007 |
SOD2 (superoxide dismutase 2) | 200,606 ± 21,341 | 206,831 ± 15,712 | 228,050 ± 13,736 | 216,919 ± 13,361 | 251,125 ± 22,574 | 0.009 |
GSR (glutathione reductase) | 65,088 ± 4503 | 69,269 ± 11,353 | 63,300 ± 16,230 | 80,150 ± 4503 | 101,813 ± 11,462 | <0.001 |
CAT (catalase) | 47,069 ± 15,632 | 51,825 ± 9008 | 58,769 ± 8490 | 61,044 ± 16,132 | 60,588 ± 10,691 | NS |
GPx1 (glutathione peroxidase 1) | 544,500 ± 81,698 | 511,500 ± 48,140 | 522,750 ± 63,346 | 507,000 ± 30,043 | 473,500 ± 65,479 | NS |
MGST1 (microsomal glutathione S-transferase 1) | 283,006 ± 56,731 | 339,250 ± 80,532 | 208,100 ± 117,469 | 420,725 ± 264,477 | 294,994 ± 229,390 | NS |
NFE2L2 (nuclear factor erythroid 2-related factor 2) | 238,775 ± 89,756 | 28,271 ± 28,022 | 143,538 ± 78,523 | 129,013 ± 51,919 | 127,938 ± 25,088 | 0.006 |
C | F | F + SMF1 | F + SMF2 | F + SMF3 | * p | |
---|---|---|---|---|---|---|
mRNA Copy Numbers/µg RNA | ||||||
BAX (BCL2 associated X, apoptosis regulator) | 162,150 ± 56,390 | 1,057,813 ± 1,343,514 | 260,906 ± 90,299 | 165,288 ± 55,281 | 315,338 ± 278,153 | NS |
BCL2 (B-cell lymphoma 2) | 75,243 ± 103,092 | 56,350 ± 9429 | 62,225 ± 34,664 | 23,101 ± 5323 | 15,527 ± 5319 | NS |
BCLXL (B-cell lymphoma—extra large) | 197,181 ± 65,858 | 271,883 ± 47,827 | 257,775 ± 67,301 | 158,491 ± 42,901 | 112,387 ± 4472 | NS |
FAS (Fas cell surface death receptor) | 334,825 ± 306,367 | 1,068,306 ± 1,029,560 | 1,087,450 ± 636,856 | 439,381 ± 298,303 | 227,213 ± 238,264 | NS |
FASL (Fas ligand) | 356 ± 421 | 74 ± 89 | 149 ± 85 | 50 ± 50 | 51 ± 27 | NS |
CASP9 (caspase 9) | 28,148 ± 13,279 | 37,381 ± 5907 | 31,013 ± 8629 | 14,529 ± 4178 | 16,955 ± 2902 | 0.004 |
CASP2 (caspase 2) | 116,188 ± 30,287 | 186,388 ± 15,879 | 178,963 ± 14,011 | 140,131 ± 24,821 | 108,763 ± 21,211 | <0.001 |
CASP3 (caspase 3) | 299,713 ± 137,632 | 480,000 ± 94,438 | 511,438 ± 167,428 | 283,938 ± 43,039 | 244,044 ± 168,991 | NS |
TNF (tumor necrosis factor) | 17,930 ± 4651 | 37,638 ± 4096 | 40,500 ± 6992 | 14,412 ± 6424 | 23,328 ± 8232 | <0.001 |
TNFR1 (tumor necrosis factor receptor 1) | 6,600,625 ± 4,298,333 | 8,998,125 ± 2,632,911 | 8,421,875 ± 1,566,133 | 6,648,750 ± 2,222,046 | 3,122,875 ± 1,240,915 | 0.049 |
SOD1 | SOD2 | GSR | NFE2L2 | CASP2 | CASP9 | TNF | TNFR1 | |
---|---|---|---|---|---|---|---|---|
SOD1 | ||||||||
SOD2 | 0.72 | |||||||
GSR | 0.41 | 0.45 | ||||||
NFE2L2 | 0.02 | −0.38 | −0.11 | |||||
CASP2 | −0.53 | −0.36 | −0.71 | 0.29 | ||||
CASP9 | −0.33 | −0.08 | −0.62 | −0.29 | 0.69 | |||
TNF | 0.03 | −0.01 | −0.58 | −0.30 | 0.51 | 0.66 | ||
TNFR1 | −0.54 | −0.45 | −0.84 | 0.22 | 0.89 | 0.61 | 0.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimsa-Dudek, M.; Krawczyk, A.; Synowiec-Wojtarowicz, A. The Protective Effect of Static Magnetic Fields with Different Magnetic Inductions against Fluoride Toxicity Is Related to the NRF2 Signaling Pathway. Appl. Sci. 2020, 10, 6509. https://doi.org/10.3390/app10186509
Kimsa-Dudek M, Krawczyk A, Synowiec-Wojtarowicz A. The Protective Effect of Static Magnetic Fields with Different Magnetic Inductions against Fluoride Toxicity Is Related to the NRF2 Signaling Pathway. Applied Sciences. 2020; 10(18):6509. https://doi.org/10.3390/app10186509
Chicago/Turabian StyleKimsa-Dudek, Magdalena, Agata Krawczyk, and Agnieszka Synowiec-Wojtarowicz. 2020. "The Protective Effect of Static Magnetic Fields with Different Magnetic Inductions against Fluoride Toxicity Is Related to the NRF2 Signaling Pathway" Applied Sciences 10, no. 18: 6509. https://doi.org/10.3390/app10186509
APA StyleKimsa-Dudek, M., Krawczyk, A., & Synowiec-Wojtarowicz, A. (2020). The Protective Effect of Static Magnetic Fields with Different Magnetic Inductions against Fluoride Toxicity Is Related to the NRF2 Signaling Pathway. Applied Sciences, 10(18), 6509. https://doi.org/10.3390/app10186509