Postural Stability and Regulation before and after High Tibial Osteotomy and Rehabilitation
Abstract
:Featured Application
Abstract
1. Introduction
- (1)
- Medial tibiofemoral OA and HTO will induce unbalanced mediolateral weight distribution;
- (2)
- Postural stability will be reduced before and after HTO;
- (3)
- After medial tibiofemoral OA/HTO and compared to healthy matched individuals the cerebellar and somatosensory subsystem will display the largest changes;
- (4)
- Pain perception and quality of life will significantly improve following HTO and rehabilitation.
2. Materials and Methods
2.1. Subjects
2.2. Measurement Set-Up
- A body mass index (BMI) of less than 40 kg/m2 based on an age range from 18 to 70 years;
- A tibiofemoral angle of less than 10° of varus;
- Intact knee ligaments;
- An asymptomatic range of motion (minimum of 120° flexion);
- Chronic knee pain during rest and motion.
2.3. Surgery and Medication
2.4. Assessments
2.4.1. Posturography
2.4.2. Pain Assessment (Visual Analogue Scale)
2.4.3. Quality of Life Assessment (SF-36)
2.4.4. Statistics
3. Results
3.1. Normal Distribution and Variance Homogeneity
3.2. Longitudinal Analysis
3.3. Cross-Sectional Analysis—Comparison of HTO Patients with Matched Subjects
3.4. Comparison of Patients Depending on the Side of Injury/HTO
3.5. Pain Assessment (VAS)
3.6. Quality of Life Assessment (SF-36)
4. Discussion
4.1. Weight Distribution and Postural Stability
4.2. Postural Regulation and Subsystems
4.3. Clinical Outcomes
4.4. Pain Situation and Quality of Life
4.5. Limitations
5. Conclusions and Clinical Implications
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Ph | Week | Goals and Content |
---|---|---|
1 | 1 |
|
2 | 2 |
|
3 | 3–10 |
|
4 | 11–15 |
|
5 | 16st week and later |
|
References
- Felson, D.T.; Naimark, A.; Anderson, J.; Kazis, L.; Castelli, W.; Meenan, R.F. The prevalence of knee osteoarthritis in the elderly. The Framingham osteoarthritis study. Arthritis Rheum. 1987, 30, 914–918. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Lau, E.; Ong, K.; Zhao, K.; Kelly, M.; Bozic, K.J. Future young patient demand for primary and revision joint replacement: National projections from 2010 to 2030. Clin. Orthop. Relat. Res. 2009, 467, 2606–2612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobenhoffer, P.; Agneskirchner, J.D. Improvements in surgical technique of valgus high tibial osteotomy. Knee Surg. Sport. Traumatol. Arthrosc. 2003, 11, 132–138. [Google Scholar] [CrossRef]
- Lobenhofffer, P.; Agneskirchner, J.; Zoch, W. Open valgus alignment osteotomy of the proximal tibia with fixation by medial plate fixator. Orthopade 2004, 33, 153–160. [Google Scholar] [CrossRef]
- Bode, G.; Schmal, H.; Pestka, J.M.; Ogon, P.; Südkamp, N.P.; Niemeyer, P. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5°. Arch. Orthop. Trauma Surg. 2013, 133, 43–49. [Google Scholar] [CrossRef]
- Van der Woude, J.A.D.; Wiegant, K.; van Heerwaarden, R.J.; Spruijt, S.; van Roermund, P.M.; Custers, R.J.H.; Mastberger, S.C.; Lafeber, F.P.J.G. Knee joint distraction compared with high tibial osteotomy: A randomized controlled trial. Knee Surg. Sport. Traumatol. Arthrosc. 2017, 25, 876–886. [Google Scholar] [CrossRef] [Green Version]
- Bonnin, M.P.; Laurent, J.R.; Zadegan, F.; Badet, R.; Pooler Archbold, H.A.; Servien, E. Can patients really participate in sport after high tibial osteotomy? Knee Surg. Sport. Traumatol. Arthrosc. 2013, 21, 64–73. [Google Scholar] [CrossRef]
- Spahn, G.; Klinger, H.M.; Harth, P.; Hofmann, G.O. Cartilage regeneration after high tibial osteotomy. Results of an arthroscopic study. Z. Orthop. Unf. 2012, 150, 272–279. [Google Scholar] [CrossRef]
- Jung, W.H.; Takeuchi, R.; Chun, C.W.; Lee, J.S.; Ha, J.H.; Kim, J.H.; Jeong, J.H. Second-look arthroscopic assessment of cartilage regeneration after medial opening-wedge high tibial osteotomy. Arthroscopy 2014, 30, 72–79. [Google Scholar] [CrossRef]
- Koh, Y.G.; Kwon, O.R.; Kim, Y.S.; Choi, Y.J. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: A prospective study. Arthroscopy 2014, 30, 1453–1460. [Google Scholar] [CrossRef]
- Jung, W.H.; Takeuchi, R.; Chun, C.W.; Lee, J.S.; Jeong, J.H. Comparison of results of medial opening-wedge high tibial osteotomy with and without subchondral drilling. Arthroscopy 2015, 31, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Wiegant, K.; van Heerwaarden, R.J.; van der Woude, J.A.D.; Custers, R.J.H.; Emans, P.J.; Kuchuk, N.O.; Mastbergen, S.C.; Lafeber, F.P.J.G. Knee joint distraction as an alternative surgical procedure for patients with osteoarthritis considered for high tibial osteotomy or for a total knee prosthesis: Rationale and design of two randomized controlled trials. Int. J. Orthop. 2015, 2, 353–360. [Google Scholar] [CrossRef]
- Bastard, C.; Mirouse, G.; Potage, D.; Silbert, H.; Roubineau, F.; Hernigou, C.H.; Flouzat-Lachaniette, C.H. Return to sports and quality of life after high tibial osteotomy in patients under 60 years of age. Orthop. Traumatol. Surg. Res. 2017, 103, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Hunt, M.A.; Birmingham, T.B.; Jones, I.C.; Vandervoort, A.A.; Giffin, J.R. Effect of tibial re-alignment surgery on single leg standing balance in patients with knee osteoarthritis. Clin. Biomech. 2009, 24, 693–696. [Google Scholar] [CrossRef]
- Zhang, Z.; Lion, A.; Chary-Valckenaere, I.; Loeuille, D.; Rat, A.C.; Paysant, J.; Perrin, P.P. Diurnal variation on balance control in patients with symptomatic knee osteoarthritis. Arch Gerontol. Geriatr. 2015, 61, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Bartels, T.; Brehme, K.; Pyschik, M.; Pollak, R.; Schaffrath, N.; Schulze, S.; Delank, K.S.; Laudner, K.G.; Schwesig, R. Postural stability and regulation before and after anterior cruciate ligament reconstruction—A two-years longitudinal study. Phys. Ther. Sport 2019, 38, 49–58. [Google Scholar] [CrossRef]
- Bartels, T.; Brehme, K.; Pyschik, M.; Schulze, S.; Delank, K.S.; Fieseler, G.; Laudner, K.G.; Hermassi, S.; Schwesig, R. Pre- and postoperative postural regulation following anterior cruciate ligament reconstruction. J. Exerc. Rehab. 2018, 14, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Miniaci, A.; Ballmer, F.T.; Ballmer, P.M.; Jakob, R.P. Proximal tibial osteotomy. A new fixation device. Clin. Orthop. Relat. Res. 1989, 246, 250–259. [Google Scholar]
- Schwesig, R.; Fischer, D.; Kluttig, A. Are there changes in postural regulation across the lifespan? Somatosens. Mot. Res. 2013, 30, 167–174. [Google Scholar] [CrossRef]
- Friedrich, M.; Grein, H.J.; Wicher, C.; Schuetze, J.; Müller, A.; Lauenroth, A.; Hottenrott, K.; Schwesig, R. Influence of pathologic and simulated visual dysfunctions on the postural system. Exp. Brain Res. 2008, 186, 305–314. [Google Scholar] [CrossRef]
- Schwesig, R.; Becker, S.; Lauenroth, A.; Kluttig, A.; Leuchte, S.; Esperer, H.D. A novel posturographic method to differentiate sway patterns of patients with Parkinson’s disease from patients with cerebellar ataxia. Biomed. Tech. 2009, 54, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Schwesig, R.; Goldich, Y.; Hahn, A.; Müller, A.; Kohen-Raz, R.; Kluttig, A.; Morad, Y. Postural control in subjects with visual impairment. Eur. J. Ophthalmol. 2011, 21, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, L.; Heilmann, F.; Teicher, M.; Wollny, R.; Lauenroth, A.; Delank, K.S.; Schwesig, R.; Wollny, R.; Kurz, E. Comparison of posturographic outcomes between two different devices. J. Biomech. 2019, 86, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Schwesig, R.; Becker, S.; Fischer, D. Intraobserver reliability of posturography in healthy subjects. Somatosens. Mot. Res. 2014, 31, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Schwesig, R.; Fischer, D.; Becker, S.; Lauenroth, A. Intraobserver reliability of posturography in patients with vestibular neuritis. Somatosens. Mot. Res. 2014, 31, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Schwesig, R.; Hollstein, L.; Plontke, S.K.; Delank, K.S.; Fieseler, G.; Rahne, T. Comparison of intraobserver single-task reliabilities of the Interactive Balance System (IBS) and Vertiguard in asymptomatic subjects. Somatosens. Mot. Res. 2017, 34, 9–14. [Google Scholar] [CrossRef]
- Seiwerth, I.; Jonen, J.; Rahne, T.; Schwesig, R.; Lauenroth, A.; Hullar, T.; Plontke, S.K. Influence of hearing on vestibulospinal control in healthy subjects. HNO 2018, 66, 590–597. [Google Scholar] [CrossRef]
- Seiwerth, I.; Jonen, J.; Rahne, T.; Lauenroth, A.; Hullar, T.; Plontke, S.; Schwesig, R. Postural regulation and stability with acoustic input in normal hearing subjects. HNO 2020, 68, 100–105. [Google Scholar] [CrossRef]
- Rat, A.C.; Coste, J.; Pouchot, J.; Baumann, M.; Spitz, E.; Retel-Rude, N.; Le Quintrec, J.S.; Dumont-Fischer, D.; Guillemin, F. OAKHQOL: A new instrument to measure quality of life in knee and hip osteoarthritis. J. Clin. Epidemiol. 2005, 58, 47–55. [Google Scholar] [CrossRef]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef]
- Bullinger, M. German translation and psychometric testing of the SF-36 Health Survey: Preliminary results from the IQOLA Project. International Quality of Life Assessment. Soc. Sci. Med. 1995, 41, 1359–1366. [Google Scholar] [CrossRef]
- Mc Horney, C.A.; Ware, J.E., Jr.; Lu, J.F.; Sherbourne, C.D. The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 1994, 32, 40–66. [Google Scholar] [CrossRef] [PubMed]
- Bullinger, M.; Alonso, J.; Apolone, G.; Leplege, A.; Sullivan, M.; Wood-Dauphinee, S. Translating health status questionnaires and evaluating their quality: The IQOLA Project approach. International Quality of Life Assessment. J. Clin. Epidemiol. 1998, 51, 913–923. [Google Scholar] [CrossRef]
- Ihle, C.; Ateschrang, A.; Grünwald, L.; Stöckle, U.; Saier, T.; Schröter, S. Health-related quality of life and clinical outcomes following medial open wedge high tibial osteotomy: A prospective study. BMC Musculoskelet. Disord. 2016, 17, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Hunt, M.A.; McManus, F.J.; Hinman, R.S.; Bennell, K.L. Predictors of single-leg standing balance in individuals with medial knee osteoarthritis. Arthritis Care Res. 2010, 62, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Salo, P. The role of joint innervation in the pathogenesis of arthritis. Can. J. Surg. 1999, 42, 91–100. [Google Scholar] [PubMed]
- Nyland, J.; Smith, S.; Beickman, K.; Armsey, T.; Caborn, D. Frontal plane knee angle affects dynamic postural control strategy during unilateral stance. Med. Sci. Sport. Exerc. 2001, 34, 1150–1157. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.S.; Yun, D.H.; Yoo, S.D.; Kim, D.H.; Jeong, J.S.; Yun, J.S.; Hwang, D.G.; Jung, P.K.; Choi, S.H. Balance control and knee osteoarthritis severity. Ann. Rehabil. Med. 2011, 35, 701–709. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, T.; Paschen, L.; Baumeister, J. Single-leg assessment of postural stability after anterior cruciate ligament injury: A systematic review and metaanalysis. Sport. Med. Open 2017, 3, 32. [Google Scholar] [CrossRef]
- Brandt, K.D.; Dieppe, P.; Radin, E.L. Etiopathogenesis of osteoarthritis. Rheum. Dis. Clin. N. Am. 2008, 34, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Barrett, D.S.; Cobb, A.G.; Bentley, G. Joint proprioception in normal, osteoarthritic and replaced knees. J. Bone Jt. Surg. Br. 1991, 73, 53–56. [Google Scholar] [CrossRef]
- Floerkemeier, S.; Staubli, A.E.; Schröter, S.; Goldhahn, S.; Lobenhoffer, P. Outcome after high tibial open-wedge osteotomy: A retrospective evaluation of 533 patients. Knee Surg. Sport. Traumatol. Arthrosc. 2013, 21, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Insall, J.N.; Joseph, D.M.; Msika, C. High tibial osteotomy for varus gonarthrosis. A long-term follow-up study. J. Bone Jt. Surg. Am. 1984, 66, 1040–1048. [Google Scholar] [CrossRef]
- Niinimäki, T.T.; Eskelinen, A.; Mann, B.S.; Junnila, M.; Ohtonen, P.; Leppilahti, J. Survivorship of high tibial osteotomy in the treatment of osteoarthritis of the knee. J. Bone Jt. Surg. Br. 2012, 94, 1517–1521. [Google Scholar] [CrossRef]
- Naudie, D.; Bourne, R.B.; Rorabeck, C.H.; Bourne, T.J. The Install award: Survivorship of the high tibial valgus osteotomy. Clin. Orthop. Relat. Res. 1999, 367, 18–27. [Google Scholar] [CrossRef]
- Saier, T.; Minzlaff, P.; Feucht, M.J.; Lämmle, L.; Burghoff, M.; Ihle, C.; Imhoff, A.B.; Hinterwimmer, S. Health-related quality of life after open-wedge high tibial osteotomy. Knee Surg. Sport. Traumatol. Arthrosc. 2017, 25, 934–942. [Google Scholar] [CrossRef]
- Webster, K.E.; Feller, J.A. Comparison of the short form-12 (SF-12) health status questionnaire with the SF-36 in patients with knee osteoarthritis who have replacement surgery. Knee Surg. Sport. Traumatol. Arthrosc. 2016, 24, 2620–2626. [Google Scholar] [CrossRef]
- Bartels, T.; Proeger, S.; Brehme, K.; Pyschik, M.; Delank, K.S.; Schulze, S.; Schwesig, R.; Fieseler, G. The SpeedCourt system in rehabilitation after reconstruction surgery of the anterior cruciate ligament (ACL). Arch. Orthop. Trauma Surg. 2016, 136, 957–966. [Google Scholar] [CrossRef]
Sex, Male:Female | 32:0 |
---|---|
Age (year) | 55.3 ± 5.57 (42.0–62.0) |
Height (m) | 1.80 ± 0.07 (1.70–2.01) |
Weight (kg) | 99.4 ± 13.4 (77.8–129.1) |
Body mass index (kg/m2) | 30.7 ± 3.65 (24.0–39.6) |
Duration of pain (month) | 28.3 ± 20.2 (4–96) |
Affected side | n = 12 left; n = 20 right |
Dominant and non-dominant leg | n = 13 left; n = 18 right (1 subject did not indicate dominance) |
Parameter | Examinations (Exam) | Variance Analysis | |||||
---|---|---|---|---|---|---|---|
Exam 1 Preoperative | Exam 2 6 Weeks Postoperative | Exam 3 12 Weeks Postoperative | Exam 4 6 Months Postoperative | Comparison of Exam 1 vs. Exam 4 | Comparison of Adjacent Exams | ||
Matched Sample | p | ηp2 | ηp2 | ||||
Visual and Nigrostriatal | 18.4 ± 5.44 | 20.9 ± 22.1 | 21.6 ± 22.0 | 17.7 ± 5.07 | 0.635 | 0.014 | - |
16.6 ± 6.44 | 0.213/0.025 | 0.289/0.018 | 0.220/0.024 | 0.431/0.010 | reference matched sample | ||
Peripheral-vestibular | 10.3 ± 3.13 | 9.78 ± 2.15 | 9.65 ± 2.00 | 9.93 ± 2.01 | 0.145 | 0.059 | - |
9.67 ± 3.46 | 0.416/0.011 | 0.872/0.000 | 0.983/0.000 | 0.708/0.002 | reference matched sample | ||
Somatosensory | 4.81 ± 1.50 | 4.48 ± 1.35 | 4.62 ± 1.17 | 4.62 ± 1.36 | 0.114 | 0.062 | 1 vs. 2 (0.152) |
4.18 ± 1.39 | 0.086/0.047 | 0.382/0.012 | 0.175/0.029 | 0.198/0.027 | reference matched sample | ||
Cerebellar | 0.90 ± 0.27 | 0.91 ± 0.30 | 0.91 ± 0.24 | 0.93 ± 0.32 | 0.810 | 0.008 | - |
0.75 ± 0.22 | 0.015/0.092 | 0.017/0.088 | 0.005/0.118 | 0.010/0.103 | reference matched sample | ||
Stability indicator | 27.1 ± 8.59 | 26.3 ± 8.03 | 26.5 ± 7.31 | 26.7 ± 8.20 | 0.728 | 0.012 | - |
19.2 ± 5.40 | <0.001/0.237 | <0.001/0.215 | <0.001/0.251 | <0.001/0.229 | reference matched sample | ||
Weight distribution index | 6.60 ± 1.78 | 7.13 ± 2.26 | 6.01 ± 2.05 | 6.01 ± 2.09 | 0.003 | 0.152 | 2 vs. 3 (0.297) |
6.11 ± 3.80 | 0.513/0.007 | 0.198/0.027 | 0.896/0.000 | 0.897/0.000 | reference matched sample | ||
Synchronization | 622 ± 108 | 589 ± 142 | 610 ± 136 | 628 ± 143 | 0.390 | 0.031 | - |
623 ± 157 | 0.978/0.000 | 0.368/0.013 | 0.722/0.002 | 0.901/0.000 | reference matched sample | ||
Anterior–posterior | 5.30 ± 8.16 | 7.54 ± 6.93 | 5.81 ± 6.91 | 7.44 ± 6.57 | 0.031 | 0.095 | 1 vs. 2 (0.170)3 vs. 4 (0.124) |
0.58 ± 10.7 | 0.051/0.060 | 0.003/0.134 | 0.023/0.080 | 0.003/0.134 | reference matched sample | ||
Mediolateral | −0.35 ± 5.42 | −0.19 ± 7.93 | −0.26 ± 5.27 | −0.58 ± 4.13 | 0.966 | 0.002 | - |
0.31 ± 5.55 | 0.628/0.004 | 0.769/0.001 | 0.675/0.003 | 0.469/0.008 | reference matched sample |
Parameter (%) | Examinations (Exam) | Variance Analysis | |||||
---|---|---|---|---|---|---|---|
Exam 1 | Exam 2 | Exam 3 | Exam 4 | Comparison of Exam 1 vs. Exam 4 | Comparison of Adjacent Exams | ||
Preoperative | 6 Weeks Postoperative | 12 Weeks Postoperative | 6 Months Postoperative | p | ηπ2 | ηπ2 | |
Patients with left-sided injury (n = 12) | |||||||
Heel | 42.9 ± 5.78 | 41.9 ± 6.11 | 42.8 ± 4.56 | 41.4 ± 4.87 | 0.594 | 0.051 | 3 vs. 4 (0.145) |
Left | 46.2 ± 4.25 | 43.1 ± 6.23 | 47.9 ± 3.68 | 50.2 ± 3.28 | 0.001 | 0.547 | 1 vs. 2 (0.219) |
2 vs. 3 (0.636) | |||||||
3 vs. 4 (0.486) | |||||||
Patients with right-sided injury (n = 20) | |||||||
Heel | 45.8 ± 9.28 | 42.8 ± 7.51 | 45.0 ± 7.99 | 43.3 ± 7.44 | 0.052 | 0.131 | 1 vs. 2 (0.272) |
2 vs. 3 (0.122) | |||||||
3 vs. 4 (0.118) | |||||||
Left | 52.9 ± 4.43 | 54.5 ± 5.42 | 51.7 ± 5.64 | 50.8 ± 4.64 | 0.031 | 0.163 | 2 vs. 3 (0.420) |
Parameter | Examinations (Exam); n = 32 | Variance Analysis | |||||
---|---|---|---|---|---|---|---|
Exam 1 Preoperative | Exam 2 6 Weeks Postoperative | Exam 3 12 Weeks Postoperative | Exam 4 6 Months Postoperative | Comparison of Exam 1 vs. Exam 4 | Comparison of Adjacent Exams | ||
p | ηp2 | ηp2 | |||||
Subscale | |||||||
Physical functioning | 46.3 ± 21.9 | 45.3 ± 21.2 | 63.0 ± 20.9 | 75.8 ± 14.9 | <0.001 | 0.451 | 2 vs. 3 (0.376) 3 vs. 4 (0.337) |
Physical role functioning | 43.0 ± 36.6 | 12.5 ± 23.8 | 57.0 ± 42.7 | 74.1 ± 30.3 | <0.001 | 0.446 | 1 vs. 2 (0.386) 2 vs. 3 (0.500) 3 vs. 4 (0.221) |
Bodily pain | 31.7 ± 17.6 | 37.2 ± 14.7 | 57.3 ± 15.2 | 64.3 ± 16.3 | <0.001 | 0.560 | 2 vs. 3 (0.562) 3 vs. 4 (0.212) |
General health perception | 57.4 ± 19.2 | 61.4 ± 18.9 | 68.2 ± 17.2 | 66.8 ± 15.9 | 0.007 | 0.134 | 2 vs. 3 (0.120) |
Vitality | 52.2 ± 18.3 | 50.9 ± 17.8 | 64.5 ± 18.1 | 65.8 ± 17.2 | <0.001 | 0.267 | 2 vs. 3 (0.369) |
Social role functioning | 78.9 ± 27.6 | 71.1 ± 24.1 | 83.2 ± 24.9 | 86.3 ± 23.4 | 0.003 | 0.151 | 2 vs. 3 (0.226) |
Emotional role functioning | 78.1 ± 37.5 | 59.4 ± 44.6 | 78.3 ± 36.3 | 85.0 ± 29.6 | 0.008 | 0.126 | 1 vs. 2 (0.188) 2 vs. 3 (0.154) |
Mental health | 74.0 ± 15.9 | 78.4 ± 16.6 | 75.9 ± 23.9 | 77.5 ± 23.1 | 0.646 | 0.016 | - |
Total score | |||||||
physical health component summary score | 31.4 ± 8.16 | 29.8 ± 7.22 | 40.5 ± 8.28 | 45.0 ± 6.36 | <0.001 | 0.573 | 2 vs. 3 (0.569) 3 vs. 4 (0.365) |
mental health component summary score | 55.0 ± 11.4 | 53.5 ± 11.3 | 54.4 ± 11.1 | 53.6 ± 11.1 | 0.804 | 0.010 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brehme, K.; Bartels, T.; Pyschik, M.; Jenz, M.; Delank, K.-S.; Laudner, K.G.; Schwesig, R. Postural Stability and Regulation before and after High Tibial Osteotomy and Rehabilitation. Appl. Sci. 2020, 10, 6517. https://doi.org/10.3390/app10186517
Brehme K, Bartels T, Pyschik M, Jenz M, Delank K-S, Laudner KG, Schwesig R. Postural Stability and Regulation before and after High Tibial Osteotomy and Rehabilitation. Applied Sciences. 2020; 10(18):6517. https://doi.org/10.3390/app10186517
Chicago/Turabian StyleBrehme, Kay, Thomas Bartels, Martin Pyschik, Manuel Jenz, Karl-Stefan Delank, Kevin G. Laudner, and René Schwesig. 2020. "Postural Stability and Regulation before and after High Tibial Osteotomy and Rehabilitation" Applied Sciences 10, no. 18: 6517. https://doi.org/10.3390/app10186517
APA StyleBrehme, K., Bartels, T., Pyschik, M., Jenz, M., Delank, K. -S., Laudner, K. G., & Schwesig, R. (2020). Postural Stability and Regulation before and after High Tibial Osteotomy and Rehabilitation. Applied Sciences, 10(18), 6517. https://doi.org/10.3390/app10186517