Present and Future Perspectives for Biocides and Antifouling Products for Stone-Built Cultural Heritage: Ionic Liquids as a Challenging Alternative
Abstract
:Featured Application
Abstract
1. Introduction
2. Biodeterioration
3. How to Treat and Protect Cultural Heritage Assets against Biodeteriogens?
3.1. Physical Methods
3.2. Chemical Methods
4. Concept of Biocides and Antifouling Products
5. Choice of Suitable Chemical Methods
6. Biologically-Derived Biocides
- microbial by-products such as zoosteric acid, capsaicin, extracellular enzymes, hydrolases, usnic acid, parietin, or bacterial extract (e.g., Bacillus) [34];
7. Conventional Biocides
8. New Technologies
8.1. Nanoparticles
8.2. Ionic Liquids
9. Final Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pinna, D. Coping with Biological Growth on Stone Heritage Objects. Methods, Products, Applications, and Perspectives; Apple Academic Press: Oakville, ON, Canada, 2017; ISBN 9781771885324. [Google Scholar]
- Guillitte, O. Bioreceptivity: A new concept for building ecology studies. Sci. Total Environ. 1995, 167, 215–220. [Google Scholar] [CrossRef]
- UNI. Beni Culturali—Materiali Lapidei Naturali Ed Artificiali—Descrizione della Forma di Alterazione—Termini e Definizioni. Available online: http://store.uni.com/catalogo/uni-11182-2006/ (accessed on 26 June 2020).
- ICOMOS-ISCS. Illustrated Glossary on Stone Deterioration Patterns. Available online: http://iscs.icomos.org/glossary.html (accessed on 26 June 2020).
- Caneva, G.; Nugari, M.P.; Salvadori, O. Plant Biology for Cultural Heritage: Biodeterioration and Conservation; Getty Publications: Los Angeles, CA, USA, 2008; ISBN 978-0-89236-939-3. [Google Scholar]
- Commissione Normal. Raccomandazioni Normal: 38/93. Valutazione Sperimentale Dell’efficacia Dei Biocidi; C.N.R. I.C. R.: Rome, Italy, 1993. [Google Scholar]
- García-Castrillo, G.; Lanuza, P.; López, G. El entorno Marino de los Restos Arqueológicos. In La Conservación del Material Subacuático; Ayuntamiento de Santoña Monte Buciero Spain: Santoña, Spain, 2003; pp. 95–109, ISSN 1138-9680 9. [Google Scholar]
- Ruffolo, S.A.; Macchia, A.; La Russa, M.F.; Mazza, L.; Urzì, C.; De Leo, F.; Barberio, M.; Crisci, G.M. Marine antifouling for underwater archaeological sites: TiO2 and Ag-Doped TiO2. Int. J. Photoenergy 2013, 2013, 251647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camara, B.; Alvarez de Buergo, M.; Bethencourt, M.; Fernandez-Montblanc, T.; La Russa, M.F.; Ricca, M.; Fort, R. Biodeterioration of marble in underwater environment. Sci. Total Environ. 2017, 609, 109–122. [Google Scholar] [CrossRef]
- Bruno, L.; Valle, V. Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman Catacombs. Int. Biodeter. Biodegr. 2017, 123, 286–295. [Google Scholar] [CrossRef]
- Krakova, L.; De Leo, F.; Bruno, L.; Pangallo, D.; Urzì, C. Complex bacterial diversity in the white biofilms of the Catacombs of St. Callixtus in Rome evidenced by different investigation strategies. Environ. Microbiol. 2015, 17, 1738–1752. [Google Scholar] [CrossRef]
- Van Der Molen, J.M.; Garty, J.; Aardema, B.W.; Krumbein, W.E. Growth control of algae and cyanobacteria on historical monuments by a mobile UV unit (MUVU). Stud. Conserv. 1980, 25, 71–77. [Google Scholar] [CrossRef]
- Borderie, F.; Alaoui–Sossé, B.; Aleya, L. Heritage materials and biofouling mitigation through UV–C irradiation in show caves: State of the art practices and future challenges. Environ. Sci. Pollut. Res. 2014, 6, 4144–4172. [Google Scholar] [CrossRef]
- Baquedano Estévez, C.; Moreno Merino, L.; de la Losa Román, A.; Durán Valsero, J.J. The lampenflora in show caves and its treatment: An emerging ecological problem. Int. J. Speleol. 2019, 48, 249–277. [Google Scholar] [CrossRef] [Green Version]
- Pfendler, S.; Einhorn, O.; Karimi, B.; Bousta, F.; Cailhol, D.; Alaoui-Sosse, L.; Alaoui-Sosse, B.; Aleya, L. UV-C as an efficient means to combat biofilm formation in show caves: Evidence from the La Glacière Cave (France) and laboratory experiments. Environ. Sci. Pollut. Res. 2017, 24, 24611–24623. [Google Scholar] [CrossRef]
- Tretiach, M.; Bertuzzi, S.; Candotto Carniel, F. Heat shock treatments: A new safe approach against lichen growth on outdoor stone surfaces. Environ. Sci. Technol. 2012, 46, 6851–6859. [Google Scholar] [CrossRef]
- Riminesi, C.; Olmi, R. Localized microwave heating for controlling biodeteriogens on cultural heritage assets. Int. J. Conserv. Sci. 2016, 7, 281–294. [Google Scholar]
- Bertuzzi, S.; Candotto Carniel, F.; Pipan, G.; Tretiach, M. Devitalization of poikilohydric lithobionts of open-air monuments by heat shock treatments: A new case study centred on bryophytes, Int. Biodeter. Biodegr. 2013, 84, 44–53. [Google Scholar] [CrossRef]
- Mascalchi, M.; Orsini, C.; Pinna, D.; Salvadori, B.; Siano, S.; Riminesi, C. Assessment of different methods for the removal of biofilms and lichens on gravestones of the English cemetery in Florence. Int. Biodeter. Biodegr. 2020, in press. [Google Scholar] [CrossRef]
- Allsopp, C.; Allsopp, D. An updated survey of commercial products used to protect materials against biodeterioration. Int. Biodeterior. Biodegrad. 1983, 19, 99–146. [Google Scholar] [CrossRef]
- AA.VV. Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 Concerning the Making Available on the Market and Use of Biocidal Products. 2012. Available online: http://data.europa.eu/eli/reg/2012/528/2019-11-20 (accessed on 18 September 2020).
- Yebra, D.M.; Kiil, S.; Johansen, K.D. Antifouling technology-past, present and future steps toward efficient and environmentally friendly antifouling coatings. Progr. Org. Coat. 2004, 50, 75–104. [Google Scholar] [CrossRef]
- Delgado Rodrigues, J.; Vale Anjos, M.; Charola, A.E. Recolonization of Marble Sculptures in a Garden Environment. In Biocolonization of Stone: Control and Preventive Methods; Charola, A.E., McNamara, C., Koestler, R.J., Eds.; Smithsonian, Contributions to Museum Conservation; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 71–85. [Google Scholar]
- Urzì, C.; De Leo, F. Evaluation of the efficiency of water-repellent and biocide compounds against microbial colonization of mortars. Int. Biodeter. Biodegr. 2007, 60, 25–34. [Google Scholar] [CrossRef]
- Pinna, D.; Salvadori, B.; Galeotti, M. Monitoring the performance of innovative and traditional biocides mixed with consolidants and water-repellents for the prevention of biological growth on stone. Sci. Total Environ. 2012, 423, 132–141. [Google Scholar] [CrossRef]
- Liu, X.; Liang, Y.; Zhou, F.; Liu, W. Extreme wettability and tunable adhesion: Biomimicking beyond nature? Soft Matter 2012, 8, 2070–2086. [Google Scholar] [CrossRef]
- Parkin, I.P.; Palgrave, R.G. Self-cleaning coatings. J. Mater. Chem. 2005, 15, 1689–1695. [Google Scholar] [CrossRef]
- Zarzuela, R.; Moreno-Garrido, I.; Blasco, J.; Gil, M.L.A.; Mosquera, M.J. Evaluation of the effectiveness of CuONPs/SiO2-based treatments for building stones against the growth of phototrophic microorganisms. Construct. Build. Mater. 2018, 187, 501–509. [Google Scholar] [CrossRef]
- La Russa, M.F.; Macchia, A.; Ruffolo, S.A.; De Leo, F.; Barberio, M.; Barone, P.; Crisci, G.M.; Urzì, C. Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of Cultural Heritage building materials. Int. Biodeter. Biodegr. 2014, 96, 87–96. [Google Scholar] [CrossRef]
- Artesani, A.; Di Turo, F.; Zucchelli, M.; Traviglia, A. Recent Advances in Protective Coatings for Cultural Heritage–An Overview. Coatings 2020, 10, 217. [Google Scholar] [CrossRef] [Green Version]
- Zarzuela, R.; Luna, M.; Carrascosa, L.A.; Mosquera, M.J. Preserving Cultural Heritage Stone: Innovative Consolidant, Superhydrophobic, Self-Cleaning, and Biocidal Products. In Advanced Materials for the Conservation of Stone; Hosseini, M., Karapanagiotis, I., Eds.; Springer: Chan, Switzerland, 2018; pp. 259–275. [Google Scholar] [CrossRef]
- Lejars, M.; Margaillan, A.M.; Bressy, C. Fouling release coatings: A nontoxic alternative to biocidal antifouling coatings. Chem. Rev. 2012, 112, 4347–4390. [Google Scholar] [CrossRef]
- Palla, F.; Bruno, M.; Mercurio, F.; Tantillo, A.; Rotolo, V. Essential Oils as Natural Biocides in Conservation of Cultural Heritage. Molecules 2020, 25, 730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruno, L.; Rugnini, L.; Spizzichino, V.; Caneve, L.; Canini, A.; Ellwood, N.T.W. Biodeterioration of Roman hypogea: The case study of the Catacombs of SS. Marcellino and Pietro (Rome, Italy). Ann. Microbiol. 2019, 69, 1023–1032. [Google Scholar] [CrossRef]
- Silva, M.; Rosado, T.; Teixeira, D.; Candeias, A.; Caldeira, A.T. Green mitigation strategy for Cultural Heritage: Bacterial potential for biocide production. Environ. Sci. Pollut. Res. 2017, 24, 4871–4881. [Google Scholar] [CrossRef] [Green Version]
- Jurado, V.; del Rosal, Y.; Gonzalez-Pimentel, J.L.; Hermosin, B.; Saiz-Jimenez, C. Biological control of phototrophic biofilms in a show cave: The case of Nerja Cave. Appl. Sci. 2020, 10, 3448. [Google Scholar] [CrossRef]
- Veneranda, M.; Blanco-Zubiaguirre, L.; Roselli, G.; Di Girolami, G.; Castro, K.A.; Madariaga, J.M. Evaluating the exploitability of several essential oils constituents as a novel biological treatment against cultural heritage biocolonization. Microchem. J. 2018, 138, 1–6. [Google Scholar] [CrossRef]
- ECHA. Guidance on the Biocidal Products Regulation: Volume V-Guidance on Active Microorganisms and Biocidal Products; European Chemicals Agency: Helsinki, Finland, 2017. [Google Scholar] [CrossRef]
- Fidanza, M.R.; Caneva, G. Natural biocides for the conservation of stone cultural heritage: A review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Bartolini, M.; Pietrini, A.M.; Ricci, S. Valutazione dell’efficacia di alcuni nuovi biocidi per il trattamento di microflora fotosintetica e di briofite su materiali lapidei. Boll. ICR 2007, 14, 101–111. [Google Scholar]
- Ruffolo, S.A.; De Leo, F.; Ricca, M.; Arcudi, A.; Silvestri, C.; Bruno, L.; Urzì, C.; La Russa, M.F. Medium-term in situ experiment by using organic biocides and titanium dioxide for the mitigation of microbial colonization on stone surfaces. Int. Biodeter. Biodegr. 2017, 123, 17–26. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998. [Google Scholar]
- Baglioni, P.; Carretti, E.; Chelazzi, D. Nanomaterials in art conservation. Nat. Nanotechnol. 2015, 10, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Fernández, A.; Gómez-Villalba, L.S.; Rabanal, M.E.; Fort, R. New nanomaterials for applications in conservation and restoration of stony materials: A review. Mater. Construct. 2017, 67, e107. [Google Scholar] [CrossRef]
- Toniolo, L.; Gherardi, F. The Protection of Marble Surfaces: The Challenge to Develop Suitable Nanostructured Treatments. In Advanced Materials for the Conservation of Stone; Hosseini, M., Karapanagiotis, I., Eds.; Springer: Cham, Switzerland, 2018; pp. 57–78. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; La Russa, M.F. Nanostructured Coatings for Stone Protection: An Overview. Front. Mater. 2019, 6, 147. [Google Scholar] [CrossRef]
- Manoudis, P.N.; Karapanagiotis, I.; Tsakalof, A.; Zuburtikudis, I.; Kolinkeovà, B.; Panayiotou, C. Superhydrophobic films for the protection of outdoor cultural heritage assets. Appl. Phys. A 2009, 97, 351–360. [Google Scholar] [CrossRef]
- Pinho, L.; Mosquera, M.J. Titania-silica nanocomposite photocatalysts with application in stone self-cleaning. J. Phys. Chem. C 2011, 115, 22851–22862. [Google Scholar] [CrossRef]
- Martines, E.; Seunarine, K.; Morgan, H.; Gadegaard, N.; Wilkinson, C.D.W.; Riehle, M.O. Superhydrophobicity and superhydrophilicity of regular nanopatterns. Nano Lett. 2005, 5, 2097–2103. [Google Scholar] [CrossRef]
- Reyes-Estebanez, M.; Ortega-Morales, B.O.; Chan-Bacab, M.; Granados-Echegoyen, C.; Camacho-Chab, J.C.; Pereañez-Sacarias, J.E.; Gaylarde, C. Antimicrobial engineered nanoparticles in the built cultural heritage context and their ecotoxicological impact on animals and plants: A brief review. Herit. Sci. 2018, 6, 52. [Google Scholar] [CrossRef]
- Semenzin, E.; Giubilato, E.; Badetti, E.; Picone, M.; Volpi Ghirardini, A.; Hristozov, D.; Brunelli, A.; Marcomini, A. Guiding the development of sustainable nano-enabled products for the conservation of works of art: Proposal for a framework implementing the safe by design concept. Environ. Sci. Pollut. Res. 2019, 26, 26146–26158. [Google Scholar] [CrossRef] [Green Version]
- Plechkova, N.V.; Seddon, K.R. Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2008, 10, 691–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eftekhari, A. Lonic Liquid Devices. Royal Society of Chemistry. 2018. Available online: https://pubs.rsc.org/en/content/ebook/978-1-78801-183-9 (accessed on 18 September 2020).
- Mecerreyes, D. Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 2011, 36, 1629–1648. [Google Scholar] [CrossRef]
- Xin, B.; Hao, J. Imidazolium-based ionic liquids grafted on solid surfaces. Chem. Soc. Rev. 2014, 43, 7171. [Google Scholar] [CrossRef] [PubMed]
- Cardiano, P.; Fazio, E.; Lazzara, G.; Manickam, S.; Milioto, S.; Neri, F.; Mineo, P.G.; Piperno, A.; Lo Schiavo, S. Highly untangled multiwalled carbon nanotube@polyhedral oligomeric silsesquioxane ionic hybrids: Synthesis, characterization and nonlinear optical properties. Carbon 2015, 86, 325–337. [Google Scholar] [CrossRef]
- Jordan, A.; Gathergood, N. Biodegradation of ionic liquids—A critical review. Chem. Soc. Rev. 2015, 44, 8200–8237. [Google Scholar] [CrossRef]
- Ferraz, R.; Branco, L.C.; Prudencio, C.; Noronha, J.P.; Petrovski, Z. Ionic Liquids as active pharmaceutical ingredients. ChemMedChem 2011, 6, 975–985; [Google Scholar] [CrossRef]
- Petkovic, M.; Seddon, K.R.; Rebelo, L.P.N.; Pereira, C.S. Ionic liquids: A pathway to environmental acceptability. Chem. Soc. Rev. 2011, 40, 1383–1403. [Google Scholar] [CrossRef]
- Santos, J.I.; Gonçalves, A.M.M.; Pereira, J.L.; Figueiredo, B.F.H.T.; Silva, F.A.; Coutinho, J.A.P.; Ventura, S.P.M.; Gonçalves, F. Environmental safety of cholinium-based ionic liquids: Assessing structure–ecotoxicity relationships. Green Chem. 2015, 17, 4657–4668. [Google Scholar] [CrossRef]
- Marr, P.C.; Marr, A.C. Ionic liquid gel materials: Applications in green and sustainable chemistry. Green Chem. 2016, 18, 105. [Google Scholar] [CrossRef] [Green Version]
- Brogan, A.P.S.; Clarke, C.J.; Charalambidou, A.; Loynachan, C.N.; Norman, S.E.; Doutche, J.; Hallet, J.P. Expanding the design space of gel materials through ionic liquid mediated mechanical and structural tuneability. Mater. Horiz. 2020, 7, 820–826. [Google Scholar] [CrossRef]
- Pendleton, J.N.; Gilmore, B.F. The antimicrobial potential of ionic liquids: A source of chemical diversity for infection and biofilm control. Int. J. Antimicrob. Agents 2015, 46, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in pharmaceutics and medicine. Chem. Rev. 2017, 117, 7132–7189. [Google Scholar] [CrossRef] [PubMed]
- Sintra, T.E.; Vilas, M.; Martins, M.; Ventura, S.P.M.; Lobo Ferreira, A.I.M.C.; Santos, L.M.N.B.F.; Fernando, J.M.; Tojo, G.E.; Coutinho, J.A.P. Synthesis and characterization of surface-active Ionic Liquids used in the disruption of Escherichia coli cells. ChemPhysChem 2019, 20, 727–735. [Google Scholar] [CrossRef]
- Benedetto, A.; Ballone, P. Room temperature Ionic Liquids Meet Biomolecules: A microscopic view of structure and dynamics. ACS Sustain. Chem. Eng. 2016, 4, 392–412. [Google Scholar] [CrossRef] [Green Version]
- Benedetto, A.; Ballone, P. Room-Temperature Ionic Liquids and biomembranes: Setting the stage for applications in pharmacology, biomedicine, and bionanotechnology. Langmuir 2018, 34, 9579–9597. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Xu, Q.; Zheng, Z.; Zhou, S.; Hailei, M.H.; Wang, B.; Yan, F. Intrinsically antibacterial poly(ionic liquid) membranes: The synergistic effect of anions. ACS Macro Lett. 2015, 4, 1094–1098. [Google Scholar] [CrossRef]
- Ye, Q.; Tingting Gao, T.; Wan, F.; Yu, B.; Pei, X.; Zhou, F.; Xue, Q. Grafting poly(ionic liquid) brushes for anti-bacterial and anti-biofouling applications. J. Mater. Chem. 2012, 22, 13123–13131. [Google Scholar] [CrossRef]
- Jin, L.; Shi, Z.; Zhang, X.; Liu, X.; Li, H.; Wang, J.; Liang, F.; Zhao, W.; Zhao, C. Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release. J. Mater. Chem. 2019, 7, 5520–5527. [Google Scholar] [CrossRef]
- Su-Yun, Z.; Zhuang, Q.; Zhang, M.; Wang, H.; Gao, Z.; Jian-Ke, S.J.; Jiayin, Y. Poly(ionic liquid) composites. Chem. Soc. Rev. 2020, 49, 1726–1755. [Google Scholar] [CrossRef]
- Machado, A.S.; Redol, P.; Branco, L.; Vilarigues, M. Ionic Liquids for Medieval Stained-Glass Cleaning: A New Frontier. In Proceedings of the ICOM-CC Lisbon. Portugal: 16th Triennal Conference, Lisbon, Portugal, 19–23 September 2011. [Google Scholar]
- Pacheco, M.F.; Pereira, A.I.; Branco, L.C.; Parola, A.J. Varnish removal from paintings using ionic liquids. J. Mater. Chem. A 2013, 1, 7016–7018. [Google Scholar] [CrossRef]
- Delgado, J.M.; Nunes, D.; Fortunato, E.; Laia, C.A.T.; Branco, L.C.; Vilarigues, M. The effect of three luminescent ionic liquids on corroded glass surfaces—A first step into stained-glass cleaning. Corros. Sci. 2017, 118, 109–117. [Google Scholar] [CrossRef]
- Przybysz, K.; Drzewinńska, E.; Stanisławska, A.; Wysocka-Robak, A.; Cieniecka-Rosłonkiewicz, A.; Foksowicz-Flaczyk, J.; Pernak, J. Ionic Liquids and paper. Ind. Eng. Chem. Res. 2005, 44, 4599–4604. [Google Scholar] [CrossRef]
- Abushammala, H.; Mao, J. A review on the partial and complete dissolution and fractionation of wood and lignocelluloses using imidazolium Ionic Liquids. Polymers 2020, 12, 195. [Google Scholar] [CrossRef] [Green Version]
- Dimitric, N.; Spremo, N.; Vraneš, M.; Belić, S.; Karaman, M.; Kovačević, S.; Karadžić, M.; Podunavac-Kuzmanović, S.; Crkvenjakovc, D.K.; Slobodan Gadžurić, S. New protic ionic liquids for fungi and bacteria removal from paper heritage. RSC Adv. 2019, 9, 17905–17912. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, K.; Wagner, S.; Reppke, M.; Maier, C.L.; Windeisen-Holzhauser, E.; Benz, J.P. Preserving cultural heritage: Analyzing the antifungal potential of ionic liquids tested in paper restoration. PLoS ONE 2019, 14, e0219650. [Google Scholar] [CrossRef] [Green Version]
- Archismita, M.; Castillo, I.F.; Müller, D.P.; Gonzμlez, C.; Eyssautier-Chuine, S.; Ziegler, A.; de la Fuente, J.M.; Mitchell, S.G.; Streb, C. Polyoxometalate-Ionic Liquids (POM-ILs) as anticorrosion and antibacterial coatings for natural stones. Angew. Chem. Int. Edit. 2018, 57, 14926–14931. [Google Scholar] [CrossRef] [Green Version]
- Cardiano, P.; Mineo, P.G.; Neri, F.; Lo Schiavo, S.; Piraino, P. A new application of ionic liquids: Hydrophobic properties of tetraalkylammonium based poly(ionic liquid)s. J. Mater. Chem. 2008, 18, 1253–1260. [Google Scholar] [CrossRef]
- Mineo, P.G.; Livoti, L.; Giannetto, M.; Gulino, A.; Lo Schiavo, S.; Cardiano, P. Very fast CO2 response and hydrophobic properties of novel poly(ionic-liquid)s. J. Mater. Chem. 2009, 19, 8861–8870. [Google Scholar] [CrossRef]
- De Leo, F.; Cardiano, P.; De Carlo, G.; Lo Schiavo, S.; Urzì, C. Testing the antimicrobial properties of an upcoming “environmental-friendly” family of ionic liquids. J. Mol. Liq. 2017, 248, 81–85. [Google Scholar] [CrossRef]
Commercial Product and Active Ingredient | % of Use and Solvent | Spectrum of Action | References |
---|---|---|---|
Preventol RI80 (CTS) alchyl-dimethyl-benzilammoniumchloride (78–82%) (benzalkonium chloride) (9–11%) | 2–10% in water | fungi, bacteria and algae | [1,40] |
Rocima™ 103 (CTS) di-n-decyl-dimethylammoniumchloride 40–60%, 2-N-octil-2H-isotiazol-3-one 7–10%, Isopropanol 15–20%, formic acid (1–2.5%) | 2% water | lichens, fungi, bacteria and algae | [1,40] |
Biotin R (CTS) 3-iodo-2-propynylbutyl carbammate 10–25% 2% 2-N-octil-2H-isotiazol-3-one 2.5–10%, 2-(2-butossietossi)etanolo 50–100% | 2–5% ethanol | fungi, bacteria and algae | [40] |
Biotin T (CTS) di-n-decyl-dimethylammoniumchloride 40–60%, 2-N-octil-2H-isotiazol-3-one 7–10%, Isopropanol 15–20%, formic acid (1–2.5%) | 2% water | fungi, bacteria and algae | [1] |
Method | When to Use | Advantages | Disadvantages | |
---|---|---|---|---|
Removal | Preventing | |||
Monochromatic visible light | X | X | Easy to use Safe for the cultural asset and for humans | Effective only against target microorganisms Possible production of organic debris to be used as a carbon source by other microorganisms |
Ultraviolet (UV-C) | X | X | Bleaching effect on biofilms. Irreversible cellular and molecular damages | Cannot be used in the presence of visitors Possible damages on painted surfaces |
Heat (microwave, heat treatment, Shock Heat treatment) | X | - | Portability Safe for the cultural asset and for the humans | Possible production of organic debris Possible water diffusion into the substrate Need to be used with other biocidal treatments |
Microorganisms against other microorganisms | X | - | Effective against target microorganisms | Hard to control practical applications. Risk assessment protocols are still missing |
Microbial by-products | X | - | Effective against target microorganisms | Hard to control practical applications. Risk assessment protocols are still missing |
Plant derived biocides (e.g., essential oils) | X | X | Effective at low doses Successfully employed in indoor environments | Not suitable for outdoor application Missing adequate application information |
QAC*-based conventional biocides | X | - | Effective against a broad spectrum of (micro)-organisms | Short or medium-term efficacy |
Nanoparticles | - | X | Depend on the properties of the treated stone and of the inorganic or organic binder | Concerns of human health and environmental risks. Some microorganisms are resistant (e.g., black fungi) |
Ionic Liquids | X | X | Tunable solvent properties and antimicrobial and surface activity Their biocidal/antifouling efficacy change depending on the length of IL chain, cation and anion used | Careful use of each molecule for dose and efficacy assessment. Some ILs may have an unwished effect incrementing microbial growth |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo Schiavo, S.; De Leo, F.; Urzì, C. Present and Future Perspectives for Biocides and Antifouling Products for Stone-Built Cultural Heritage: Ionic Liquids as a Challenging Alternative. Appl. Sci. 2020, 10, 6568. https://doi.org/10.3390/app10186568
Lo Schiavo S, De Leo F, Urzì C. Present and Future Perspectives for Biocides and Antifouling Products for Stone-Built Cultural Heritage: Ionic Liquids as a Challenging Alternative. Applied Sciences. 2020; 10(18):6568. https://doi.org/10.3390/app10186568
Chicago/Turabian StyleLo Schiavo, Sandra, Filomena De Leo, and Clara Urzì. 2020. "Present and Future Perspectives for Biocides and Antifouling Products for Stone-Built Cultural Heritage: Ionic Liquids as a Challenging Alternative" Applied Sciences 10, no. 18: 6568. https://doi.org/10.3390/app10186568
APA StyleLo Schiavo, S., De Leo, F., & Urzì, C. (2020). Present and Future Perspectives for Biocides and Antifouling Products for Stone-Built Cultural Heritage: Ionic Liquids as a Challenging Alternative. Applied Sciences, 10(18), 6568. https://doi.org/10.3390/app10186568