Granular Material Development Applied in an Experimental Section for Civil Engineering Purposes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
3.1. Chemical Composition: XRF and XRD
3.2. Dynamic Leaching Test (EN-12457-4)
3.3. Percolation Column Test (CEN/TS 16637) for the WBA, Crushed M and GM
3.4. Experimental Section: “Accumulated” and “Punctual” Rainwater Leachates
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Del Valle-Zermeño, R.; Giro-Paloma, J.; Formosa, J.; Chimenos, J.M. APC fly ash recycling: Development of a granular material from laboratory to a pilot scale. Waste Biomass Valorization 2017, 8, 1409–1419. [Google Scholar]
- European Commission the role of waste-to-energy in the circular economy. Commun. From Comm. Eur. Parliam. Counc. Eur. Econ. Soc. Comm. Comm. Reg. 2017, 11. Available online: https://ec.europa.eu/environment/waste/waste-to-energy.pdf (accessed on 8 July 2020).
- Blasenbauer, D.; Huber, F.; Lederer, J.; Quina, M.J.; Blanc-Biscarat, D.; Bogush, A.; Bontempi, E.; Blondeau, J.; Chimenos, J.M.; Dahlbo, H.; et al. Legal situation and current practice of waste incineration bottom ash utilisation in Europe. Waste Manag. 2020, 102, 868–883. [Google Scholar] [PubMed]
- Departament de Territori i Sostenibilitat. Balanç de Les Dades Estadístiques de Residus Municipals de L’any, 2018; Agència de Residus de Catalunya: Barcelona, Spain, 2018. [Google Scholar]
- Del Valle-Zermeño, R.; Gómez-Manrique, J.; Giro-Paloma, J.; Formosa, J.; Chimenos, J.M. Material characterization of the MSWI bottom ash as a function of particle size. Effects of glass recycling over time. Sci. Total Environ. 2017, 581–582, 897–905. [Google Scholar]
- Pérez-Martínez, S.; Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Queralt, I. Characterisation and partition of valuable metals from WEEE in weathered municipal solid waste incineration bottom ash, with a view to recovering. J. Clean. Prod. 2019, 218, 61–68. [Google Scholar]
- Silva, R.V.; de Brito, J.; Lynn, C.J.; Dhir, R.K. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review. Waste Manag. 2017, 68, 207–220. [Google Scholar] [PubMed]
- Maldonado-Alameda, A.; Giro-Paloma, J.; Svobodova-Sedlackova, A.; Formosa, J.; Chimenos, J.M. Municipal solid waste incineration bottom ash as alkali-activated cement precursor depending on particle size. J. Clean. Prod. 2020, 242, 118443. [Google Scholar]
- Del Valle-Zermeño, R.; Romero-Güiza, M.S.; Chimenos, J.M.; Formosa, J.; Mata-Alvarez, J.; Astals, S. Biogas upgrading using MSWI bottom ash: An integrated municipal solid waste management. Renew. Energy 2015, 80, 184–189. [Google Scholar]
- Chimenos, J.M.; Fernández, A.I.; Nadal, R.; Espiell, F. Short-term natural weathering of MSWI bottom ash. J. Hazard. Mater. 2000, 79, 287–299. [Google Scholar]
- Cioffi, R.; Colangelo, F.; Montagnaro, F.; Santoro, L. Manufacture of artificial aggregate using MSWI bottom ash. Waste Manag. 2011, 31, 281–288. [Google Scholar]
- Hjelmar, O.; Holm, J.; Crillesen, K. Utilisation of MSWI bottom ash as sub-base in road construction: First results from a large-scale test site. J. Hazard. Mater. 2007, 139, 471–480. [Google Scholar]
- Pecqueur, G.; Crignon, C.; Quénée, B. Behaviour of cement-treated MSWI bottom ash. Waste Manag. 2001, 21, 229–233. [Google Scholar] [PubMed]
- Toraldo, E.; Saponaro, S.; Careghini, A.; Mariani, E. Use of stabilized bottom ash for bound layers of road pavements. J. Environ. Manag. 2013, 121, 117–123. [Google Scholar]
- Ginés, O.; Chimenos, J.M.; Vizcarro, A.; Formosa, J.; Rosell, J.R. Combined use of MSWI bottom ash and fly ash as aggregate in concrete formulation: Environmental and mechanical considerations. J. Hazard. Mater. 2009, 169, 643–650. [Google Scholar] [PubMed]
- Verbinnen, B.; Billen, P.; Van Caneghem, J.; Vandecasteele, C. Recycling of MSWI bottom ash: A review of chemical barriers, engineering applications and treatment technologies. Waste Biomass Valorization 2017, 8, 1453–1466. [Google Scholar]
- Lancellotti, I.; Ponzoni, C.; Bignozzi, M.C.; Barbieri, L.; Leonelli, C. Incinerator bottom ash and ladle slag for geopolymers preparation. Waste Biomass Valorization 2014, 5, 393–401. [Google Scholar]
- Luna Galiano, Y.; Fernández Pereira, C.; Vale, J. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J. Hazard. Mater. 2011, 185, 373–381. [Google Scholar]
- Yvon, J.; Antenucci, D.; Jdid, E.-A.; Lorenzi, G.; Dutre, V.; Leclerq, D.; Nielsen, P.; Veschkens, M. Long-term stability in landfills of MSWI fly ashes solid-ified/stabilized by hydraulic binders. J. Geochem. Explor. 2006, 90, 143–155. [Google Scholar]
- Quina, M.J.; Bordado, J.M.; Quinta-Ferreira, R.M. Recycling of air pollution control residues from municipal solid waste incineration into lightweight aggregates. Waste Manag. 2014, 34, 430–438. [Google Scholar]
- Lancellotti, I.; Kamseu, E.; Michelazzi, M.; Barbieri, L.; Corradi, A.; Leonelli, C. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manag. 2010, 30, 673–679. [Google Scholar]
- Chandler, A.J. Municipal Solid Waste Incinerator Residues Studies in Environmental Sciences; Elsevier Science Publishers: Amsterdam, The Netherlands, 1997; ISBN 0-444-82563-0. [Google Scholar]
- Baur, I.; Ludwig, C.; Annette Johnson, C. The leaching behavior of cement stabilized air pollution control residues: A comparison of field and laboratory investigations. Environ. Sci. Technol. 2001, 35, 2817–2822. [Google Scholar]
- Garcia-Lodeiro, I.; Carcelen-Taboada, V.; Fernández-Jiménez, A.; Palomo, A. Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator. Constr. Build. Mater. 2016, 105, 218–226. [Google Scholar]
- AENOR Characterisation of waste—Leaching-compliance test for leaching of granular waste materials and sludges. Part 4: One stage batch test at a liquid to solid ratio of 10 L/kg for materials with particle size below 10 mm (without or with size reduction) 2006. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0029584 (accessed on 16 July 2020).
- CEN/TS 16637-3 Construction Products—Assessment of Release of Dangerous Substances. Part 3: Horizontal up-Flow Percolation Test. Available online: https://standards.iteh.ai/catalog/standards/cen/a8c5bddb-392c-40fa-9fd5-26cde8a5b177/cen-ts-16637-3-2016 (accessed on 16 July 2020).
- Del Valle-Zermeño, R.; Formosa, J.; Prieto, M.; Nadal, R.; Niubó, M.; Chimenos, J.M. Pilot-scale road subbase made with granular material formulated with MSWI bottom ash and stabilized APC fly ash: Environmental impact assessment. J. Hazard. Mater. 2014, 266, 132–140. [Google Scholar] [PubMed]
- Decret 69/2009, 28 april establishing criteria and procedures for admission of controlled waste deposits. 2009. Available online: http://cido.diba.cat/legislacio/1177291/decret-692009-de-28-dabril-pel-qual-sestableixen-els-criteris-i-els-procediments-dadmissio-de-residus-en-els-diposits-controlats (accessed on 21 July 2020).
- Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. Official Journal of the European Communities, L 182, 1-19. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31999L0031&from=EN (accessed on 29 June 2020).
- Yasutaka, T.; Naka, A.; Sakanakura, H.; Kurosawa, A.; Inui, T.; Takeo, M.; Inoba, S.; Watanabe, Y.; Fujikawa, T.; Miura, T.; et al. Reproducibility of up-flow column percolation tests for contaminated soils. PLoS ONE 2017, 12, e1–e17. [Google Scholar]
- Naka, A.; Yasutaka, T.; Sakanakura, H.; Kalbe, U.; Watanabe, Y.; Inoba, S.; Takeo, M.; Inui, T.; Katsumi, T.; Fujikawa, T.; et al. Column percolation test for contaminated soils: Key factors for standardization. J. Hazard. Mater. 2016, 320, 326–340. [Google Scholar] [PubMed] [Green Version]
- Löv, Å.; Larsbo, M.; Sjöstedt, C.; Cornelis, G.; Gustafsson, J.P.; Kleja, D.B. Evaluating the ability of standardised leaching tests to predict metal(loid) leaching from intact soil columns using size-based elemental fractionation. Chemosphere 2019, 222, 453–460. [Google Scholar] [PubMed]
- Quina, M.J.; Bordado, J.C.M.; Quinta-Ferreira, R.M. Percolation and batch leaching tests to assess release of inorganic pollutants from municipal solid waste incinerator residues. Waste Manag. 2011, 31, 236–245. [Google Scholar]
- Chai, J.C.; Onitsuk, K.; Hayashi, S. Cr(VI) concentration from batch contact/tank leaching and column percolation test using fly ash with additives. J. Hazard. Mater. 2009, 166, 67–73. [Google Scholar]
- Guyonnet, D.; Bodénan, F.; Brons-Laot, G.; Burnol, A.; Chateau, L.; Crest, M.; Méhu, J.; Moszkowicz, P.; Piantone, P. Multiple-scale dynamic leaching of a municipal solid waste incineration ash. Waste Manag. 2008, 28, 1963–1976. [Google Scholar]
- Grathwohl, P.; Susset, B. Comparison of percolation to batch and sequential leaching tests: Theory and data. Waste Manag. 2009, 29, 2681–2688. [Google Scholar]
- Tiruta-Barna, L.; Rethy, Z.; Barna, R. Release dynamic process identification for a cement based material in various leaching conditions. Part II. Modelling the release dynamics for different leaching conditions. J. Environ. Manag. 2005, 74, 127–139. [Google Scholar]
- Chimenos, J.M.; Segarra, M.; Fernández, M.A.; Espiell, F. Characterization of the bottom ash in municipal solid waste incinerator. J. Hazard. Mater. 1999, 64, 211–222. [Google Scholar] [CrossRef]
- Sabbas, T.; Polettini, A.; Pomi, R.; Astrup, T.; Hjelmar, O.; Mostbauer, P.; Cappai, G.; Magel, G.; Salhofer, S.; Speiser, C.; et al. Management of municipal solid waste incineration residues. Waste Manag. 2003, 23, 61–88. [Google Scholar] [CrossRef]
- Del Valle-Zermeño, R.; Chimenos, J.M.; Giro-Paloma, J.; Formosa, J. Use of weathered and fresh bottom ash mix layers as a subbase in road constructions: Environmental behavior enhancement by means of a retaining barrier. Chemosphere 2014, 117, 402–409. [Google Scholar] [CrossRef] [Green Version]
- De Catalunya, P. Diari oficial de la generalitat de catalunya. Dep. Medio Ambiente Y Vivienda 2009, 30, 4. [Google Scholar]
- Departament de Medi Ambient. Ordre de 15 de febrer de 1996, sobre valorització d’ escories. General. Catalunya 1996, 3, 13. [Google Scholar]
Element | Inert | Non-Hazardous | Hazardous |
---|---|---|---|
As | 0.5 | 2 | 25 |
Ba | 20 | 100 | 300 |
Cr | 0.5 | 10 | 70 |
Cu | 2 | 50 | 100 |
Hg | 0.01 | 0.2 | 2 |
Mo | 0.5 | 10 | 30 |
Ni | 0.4 | 10 | 40 |
Pb | 0.5 | 10 | 50 |
Zn | 4 | 50 | 200 |
Compound | wt. % | |||
---|---|---|---|---|
WBA | APC | Crushed M | GM | |
SiO2 | 43.30 | 6.64 | 21.70 | 39.15 |
CaO | 16.90 | 48.35 | 45.30 | 26.59 |
Cl | 0.14 | 8.86 | 9.08 | 0.89 |
Fe2O3 | 14.10 | 0.79 | 1.65 | 16.89 |
Na2O | 7.58 | 4.28 | 4.44 | 3.71 |
Al2O3 | 5.80 | 4.02 | 3.82 | 4.87 |
MgO | 2.22 | 1.73 | 1.87 | 2.02 |
K2O | 1.11 | 4.33 | 2.10 | 1.67 |
CuO | 0.23 | - | - | 0.13 |
SO3 | 0.65 | 6.24 | 4.53 | 1.53 |
TiO2 | 0.35 | 0.86 | 0.68 | 0.30 |
P2O5 | 2.97 | 1.36 | 0.51 | 1.10 |
ZnO | 0.18 | 0.72 | 0.32 | 0.19 |
PbO | - | 0.12 | 0.13 | 0.03 |
LOI | 4.47 | 11.7 | 3.87 | 0.93 |
H (%) | WD (%) | pH | k (mS·cm−1) | As | Ba | Total Cr | Cu | Hg | Mo | Ni | Pb | Zn | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WBA | 7.34 | 93.00 | 12.09 | 2.97 | 0.010 | 2.5 | 1.780 | 9.215 | 0.01 | 2.0 | <0.2 | 0.395 | 1.535 | |
APC | 2.54 | 97.46 | 12.50 | 5.84 | <0.520 | 39.3 | <0.040 | 0.790 | 0.01 | 2.5 | <1.3 | 47.350 | 19.830 | |
Crushed M | 15.19 | 84.81 | 12.66 | 16.33 | 0.010 | 97.4 | 1.595 | 0.600 | 0.01 | 2.8 | <6.1 | 5.600 | 1.805 | |
GM | 10.66 | 98.5 | 11.31 | 1.61 | 0.010 | 9.7 | 1.140 | 5.600 | 0.01 | 1.8 | <1.1 | 0.415 | 4.310 | |
Landfill a | Inert limit | - | - | - | - | 0.5 | 20 | 0.5 | 2 | 0.01 | 0.5 | 0.4 | 0.5 | 4 |
Non-hazardous limit | - | - | - | - | 2 | 100 | 10 | 50 | 0.2 | 10 | 10 | 10 | 50 | |
Hazardous limit | - | - | - | - | 25 | 300 | 70 | 100 | 2 | 30 | 40 | 50 | 200 | |
Utilization b | 1 | - | 5 c | 20 | 0.2 | - | 5 | 5 | 20 |
Material | Total Mass (kg) | m0 (kg) | ||
---|---|---|---|---|
WBA | 0.825 | 0.784 | 0.767 | 0.729 |
M | 0.710 | 0.578 | 0.600 | 0.490 |
GM | 0.830 | 0.829 | 0.741 | 0.741 |
Eluates | L/S | pH | k (μS/cm) | As | Ba | Total Cr | Cu | Hg | Mo | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WBA | E1 | 0.1 | 11.90 | 26.15 | 0.28 | 1.06 | 28.77 | 28.18 | 0.01 | 10.26 | 0.27 | 1.29 | 1.34 |
E2 | 0.2 | 12.08 | 28.65 | 0.30 | 1.25 | 19.88 | 29.77 | 0.01 | 10.77 | 0.20 | 0.76 | 1.28 | |
E3 | 0.5 | 11.76 | 18.95 | 0.26 | 0.75 | 12.59 | 21.34 | 0.01 | 7.68 | 0.13 | 3.61 | 1.36 | |
E4 | 1.0 | 11.97 | 9.23 | 0.10 | 0.16 | 6.07 | 10.33 | 0.01 | 4.00 | 0.04 | 2.82 | 1.35 | |
E5 | 2.0 | 12.20 | 3.85 | 0.03 | 0.10 | 3.28 | 4.77 | 0.01 | 2.06 | 0.03 | 7.41 | 0.30 | |
E6 | 5.0 | 10.87 | 1.38 | 0.02 | 0.05 | 0.86 | 1.59 | 0.01 | 0.73 | 0.01 | 0.07 | 0.28 | |
E7 | 10.0 | 10.11 | 0.81 | 0.01 | 0.04 | 0.30 | 0.70 | 0.01 | 0.27 | 0.03 | 0.05 | 0.28 | |
Crushed M | E1 | 0.1 | 13.33 | 90.05 | 1.26 | 17.00 | 5.54 | 3.25 | 0.22 | 4.84 | 1.66 | 35.37 | 2.60 |
E2 | 0.2 | 13.42 | 90.40 | 1.71 | 20.21 | 7.06 | 5.28 | 0.15 | 7.31 | 1.32 | 19.31 | 2.60 | |
E3 | 0.5 | 13.29 | 68.75 | 1.05 | 17.74 | 6.39 | 2.44 | 0.15 | 3.61 | 0.89 | 2.70 | 2.60 | |
E4 | 1.0 | 13.57 | 45.05 | 0.67 | 24.00 | 3.39 | 1.40 | 0.15 | 2.05 | 0.88 | 4.26 | 2.60 | |
E5 | 2.0 | 13.46 | 24.90 | 0.32 | 31.53 | 3.00 | 0.69 | 0.11 | 0.92 | 0.91 | 5.78 | 1.41 | |
E6 | 5.0 | 13.33 | 12.15 | 0.17 | 31.99 | 2.53 | 0.48 | 0.11 | 0.40 | 0.69 | 5.23 | 1.60 | |
E7 | 10.0 | 12.94 | 4.37 | 0.05 | 27.99 | 2.32 | 0.13 | 0.02 | 0.19 | 0.44 | 5.78 | 0.40 | |
GM | E1 | 0.1 | 13.11 | 49.40 | 0.83 | 6.12 | 3.96 | 36.63 | 0.01 | 6.08 | 0.93 | 3.42 | 4.94 |
E2 | 0.2 | 13.14 | 47.50 | 1.08 | 3.66 | 4.18 | 47.51 | 0.01 | 8.09 | 0.98 | 4.86 | 8.04 | |
E3 | 0.5 | 13.37 | 30.70 | 0.48 | 2.10 | 2.70 | 19.68 | 0.01 | 3.23 | 0.38 | 1.92 | 3.37 | |
E4 | 1.0 | 13.54 | 18.23 | 0.18 | 2.73 | 2.70 | 7.64 | 0.01 | 1.20 | 0.43 | 1.63 | 2.70 | |
E5 | 2.0 | 12.81 | 8.04 | 0.04 | 2.81 | 0.03 | 2.31 | 0.01 | 0.34 | 0.20 | 1.00 | 0.69 | |
E6 | 5.0 | 12.89 | 4.00 | 0.02 | 2.71 | 0.03 | 0.90 | 0.01 | 0.14 | 0.15 | 0.76 | 0.39 | |
E7 | 10.0 | 11.82 | 2.82 | 0.02 | 1.97 | 0.03 | 0.51 | 0.01 | 0.10 | 0.13 | 0.46 | 0.15 | |
Inert limit | - | - | - | 0.5 | 20 | 0.5 | 2 | 0.01 | 0.5 | 0.4 | 0.5 | 4 | |
Non-hazardous limit | - | - | - | 2 | 100 | 10 | 50 | 0.2 | 10 | 10 | 10 | 50 | |
Hazardous limit | - | - | - | 25 | 300 | 70 | 100 | 100 | 30 | 40 | 50 | 200 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giro-Paloma, J.; Formosa, J.; Chimenos, J.M. Granular Material Development Applied in an Experimental Section for Civil Engineering Purposes. Appl. Sci. 2020, 10, 6782. https://doi.org/10.3390/app10196782
Giro-Paloma J, Formosa J, Chimenos JM. Granular Material Development Applied in an Experimental Section for Civil Engineering Purposes. Applied Sciences. 2020; 10(19):6782. https://doi.org/10.3390/app10196782
Chicago/Turabian StyleGiro-Paloma, Jessica, Joan Formosa, and Josep M. Chimenos. 2020. "Granular Material Development Applied in an Experimental Section for Civil Engineering Purposes" Applied Sciences 10, no. 19: 6782. https://doi.org/10.3390/app10196782
APA StyleGiro-Paloma, J., Formosa, J., & Chimenos, J. M. (2020). Granular Material Development Applied in an Experimental Section for Civil Engineering Purposes. Applied Sciences, 10(19), 6782. https://doi.org/10.3390/app10196782