Application of Satellite Remote Sensing in Monitoring Elevated Internal Temperatures of Landfills
Abstract
:1. Introduction
2. Study Goal and Site Description
Satellite Data Acquisition and Processing
3. Approach
4. Results
4.1. Temperature Trends
4.2. Behavior of the Landfill at Pixel Level in Both Spatial and Time Domains
- is the normalized pixel (i,j) in any given image data;
- is the recorded temperature in the LST observation in pixel (i,j) at time t;
- is the landfill observation (image) average, which is given by Equation (6).
- I = 1 for all negative indices (lowest);
- I = 2, 3, 4 for intervals 2, 3, 4 standard deviations;
- I = 5, for AHI (t,p) >− (highest),
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Clustering the Landfill Based on Its Temperature
- Number of cells for whole landfill = 306
- Number of cells South quarry (lower region) = 180
- Number of cells Neck area (middle region) = 72
- Number of cells North quarry (upper region) = 54
- = mean landfill temperature at time t
- for cells, i,j are the pixel coordinates
- (t))/n
- Number of cells for whole landfill = 306
- Number of cells South quarry (lower region) = 52
- Number of cells Neck area (middle region) = 190
- Number of cells North quarry (upper region) = 64
References
- You, H.; Ma, Z.; Tang, Y.; Wang, Y.; Yan, J.; Ni, M.; Cen, K.; Huang, Q. Comparison of ANN (MLP), ANFIS, SVM, and RF models for the online classification of heating value of burning municipal solid waste in circulating fluidized bed incinerators. Waste Manag. 2017, 68, 186–197. [Google Scholar] [CrossRef]
- Hanson, J.L.; Liu, W.-L.; Yesiller, N. Analytical and numerical methodology for modeling temperatures in landfills. In GeoCongress 2008: Geotechnics of Waste Management and Remediation; American Society of Civil Engineers (ASCE): New Orleans, LA, USA, 2008; pp. 24–31. [Google Scholar]
- Yeşiller, N.; Hanson, J.L.; Liu, W.-L. Heat generation in municipal solid waste landfills. J. Geotech. Geoenviron. Eng. 2005, 131, 1330–1344. [Google Scholar] [CrossRef] [Green Version]
- Faitli, J.; Magyar, T.; Erdélyi, A.; Murányi, A. Characterization of thermal properties of municipal solid waste landfills. Waste Manag. 2015, 36, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Faitli, J.; Magyar, T.; Romenda, R.; Erdélyi, A.; Boldizsár, C. Laying the Foundation for Engineering Heat Management of Waste Landfills. Environ. Res. J. 2017, 11, 323–348. [Google Scholar]
- ATSDR. Landfill Gas Primer: An Overview for Environmental Health Professionals; United States Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2001.
- Brune, M.; Ramke, H.; Collins, H.; Hanert, H. Incrustation processes in drainage systems of sanitary landfills. In Proceedings of the 3rd International Landfill Symposium, Cagliari, Italy, 4–8 October 1999; pp. 999–1035. [Google Scholar]
- Döll, P. Desiccation of mineral liners below landfills with heat generation. J. Geotech. Geoenviron. Eng. 1997, 123, 1001–1009. [Google Scholar] [CrossRef]
- El-Fadel, M.; Findikakis, A.; Leckie, J. Numerical modelling of generation and transport of gas and heat in landfills I. Model formulation. Waste Manag. Res. 1996, 14, 483–504. [Google Scholar] [CrossRef]
- Pirt, S. Aerobic and anaerobic microbial digestion in waste reclamation. J. Appl. Chem. Biotechnol. 1978. [Google Scholar]
- McBean, E.A.; Rovers, F.A.; Farquhar, G.J. Solid Waste Landfill Engineering and Design; Prentice Hall: New York, NY, USA, 1995. [Google Scholar]
- Southen, J.; Rowe, R.K. Modelling of thermally induced desiccation of geosynthetic clay liners. Geotext. Geomembr. 2005, 23, 425–442. [Google Scholar] [CrossRef]
- Yoshida, H.; Rowe, R. Consideration of landfill liner temperature. In Proceedings of the Sardinia 2003, Ninth International Waste Management and Landfill Symposium S, Margherita di Pula, Cagliari, Italy, 6–10 October 2003. [Google Scholar]
- Kwarteng, A.; Al-Enezi, A. Assessment of Kuwait’s Al-Qurain landfill using remotely sensed data. J. Environ. Sci. Health Part A 2004, 39, 351–364. [Google Scholar] [CrossRef] [PubMed]
- Shaker, A.; Yan, W.Y. Trail road landfill site monitoring using multitemporal Landsat satellite data. In Proceedings of the Canadian Geomatics Conference 2010 and ISPRS COM I Symposium, Calgary, AB, Canada, 14–18 June 2010. [Google Scholar]
- Hall, D.; Drury, D.; Keeble, R.; Morgans, A.; Wyles, R. Review and Investigation of Deep-Seated Fires within Landfill Sites; Environment Agency: Bristol, UK, 2007.
- Jafari, N.H. Elevated Temperatures in Waste Containment Facilities; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2015. [Google Scholar]
- Youmaran, K. We Didn’t Start the Fire: The Current Outlook of the Bridgeton Landfill and Its Implications for Missourians. J. Environ. Sustain. Law 2015, 22, 365. [Google Scholar]
- Kret, J.; Dame, L.D.; Tutlam, N.; DeClue, R.W.; Schmidt, S.; Donaldson, K.; Lewis, R.; Rigdon, S.E.; Davis, S.; Zelicoff, A. A respiratory health survey of a subsurface smoldering landfill. Environ. Res. 2018, 166, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R. The West Lake Landfill: A Radioactive Legacy of the Nuclear Arms Race; Institute for Policy Studies: Washington, DC, USA, 2013. [Google Scholar]
- Thalhamer, T. Subsurface Chemical Processes at the Bridgeton Landfill; Hammer Consulting Service: Cameron Park, CA, USA, 2013. [Google Scholar]
- Timothy, D. Stark, T.T. Bridgeton Landfill North Quarry Contingency Plan; Quality, D.O.E., Ed.; Missouri Department of Natural Resources: Jefferson City, MO, USA, 2013.
- Thalhamer, T. Data Evaluation of the Subsurface Smoldering Event at the Bridgeton Landfill; Hammer Consulting Service: Cameron Park, CA, USA, 2015. [Google Scholar]
- USGS. Landsat 8 (L8) Data Users Handbook, 2nd ed.; United States Geological Survey (USGS): Reston, VA, USA, 2016.
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Van de Griend, A.; OWE, M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Li, Y. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Comput Geosci. 2006, 32, 1796–1805. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Li, Z.-L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.-H.; Yan, G. Land surface emissivity retrieval from satellite data. Int. J. Remote Sens. 2013, 34, 3084–3127. [Google Scholar] [CrossRef]
- Mahmood, K.; Batool, S.A.; Chaudhry, M.N. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Manag. 2016, 55, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Archived Reports: Bridgeton Sanitary Landfill. Available online: https://dnr.mo.gov/bridgeton/BridgetonSanitaryLandfillReports.htm (accessed on 4 June 2020).
- U.S. Fire Administration. Landfill Fires: Their Magnitude, Characteristics, and Mitigation; U.S. Fire Administration: Emmitsburg, MA, USA, 2002.
Constant | K1 | K2 |
---|---|---|
Units | W/ (sr m2 µm) | kelvin |
L5 TM | 607.76 | 1260.56 |
L8 TIR | 774.89 | 1321.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazari, R.; Alfergani, H.; Haas, F.; Karimi, M.E.; Fahad, M.G.R.; Sabrin, S.; Everett, J.; Bouaynaya, N.; Peters, R.W. Application of Satellite Remote Sensing in Monitoring Elevated Internal Temperatures of Landfills. Appl. Sci. 2020, 10, 6801. https://doi.org/10.3390/app10196801
Nazari R, Alfergani H, Haas F, Karimi ME, Fahad MGR, Sabrin S, Everett J, Bouaynaya N, Peters RW. Application of Satellite Remote Sensing in Monitoring Elevated Internal Temperatures of Landfills. Applied Sciences. 2020; 10(19):6801. https://doi.org/10.3390/app10196801
Chicago/Turabian StyleNazari, Rouzbeh, Husam Alfergani, Francis Haas, Maryam E. Karimi, Md Golam Rabbani Fahad, Samain Sabrin, Jess Everett, Nidhal Bouaynaya, and Robert W. Peters. 2020. "Application of Satellite Remote Sensing in Monitoring Elevated Internal Temperatures of Landfills" Applied Sciences 10, no. 19: 6801. https://doi.org/10.3390/app10196801
APA StyleNazari, R., Alfergani, H., Haas, F., Karimi, M. E., Fahad, M. G. R., Sabrin, S., Everett, J., Bouaynaya, N., & Peters, R. W. (2020). Application of Satellite Remote Sensing in Monitoring Elevated Internal Temperatures of Landfills. Applied Sciences, 10(19), 6801. https://doi.org/10.3390/app10196801