Myoglobin-Based Classification of Minced Meat Using Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
- 1.
- Meat sampling: Purchasing and mincing of Bovine/beef, Ovine/mutton and Poultry/chicken. To ensure no adulteration in minced meat types, proper cleaning of mixer is done every time, prior the mincing process.
- 2.
- HSI-sytem: Data acquisition using HSI system and calculation of reflectance and absorption.
- 3.
- Pre-processing: Formation of a true-color image to select the exact region of interest (ROI).
- 4.
- Spectral features: Extraction of intensity features through spectral characteristics of the isos-bestic point of Mb pigments.
- 5.
- Classification: Classification of minced meat types using SVM.
2.1. Meat Sampling
2.2. Data Acquisition
Image Correction
2.3. Spatail-Spectral Pre-Processing
2.3.1. Spatial Pre-Processing
True-Color Image:
2.3.2. Spectral Pre-Processing
2.4. Spectral Features
2.5. Classification
3. Results and Discussion
3.1. Spectral Features Analysis
3.2. Meat-Type Classification
3.3. Comparison With State-of-the-Art PCA Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Declaration of Competing Interest
References
- The Color of Meat and Poultry. Available online: https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-sheets/meat-preparation/the-color-of-meat-and-poultry/the-color-of-meat-and-poultry/ct_index#:~:text=When%20meat%20is%20fresh%20and,a%20pleasingly%20cherry%2Dred%20color. (accessed on 19 August 2020).
- American Meat Science Association. AMSA Meat Color Measurement Guidelines: AMSA; American Meat Science Association: Savoy, IL, USA, 2012. [Google Scholar]
- Tang, J.; Faustman, C.; Hoagland, T. Krzywicki revisited: Equations for spectrophotometric determination of myoglobin redox forms in aqueous meat extracts. J. Food Sci. 2004, 69, C717–C720. [Google Scholar] [CrossRef]
- Viriyarattanasak, C.; Hamada-Sato, N.; Watanabe, M.; Kajiwara, K.; Suzuki, T. Equations for spectrophotometric determination of relative concentrations of myoglobin derivatives in aqueous tuna meat extracts. Food Chem. 2011, 127, 656–661. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, G.; He, J.; Wan, G.; Ma, C.; Ban, J.; Ma, L. Non-destructive assessment of the myoglobin content of Tan sheep using hyperspectral imaging. Meat Sci. 2019, 167, 107988. [Google Scholar] [CrossRef]
- Wu, S.; Luo, X.; Yang, X.; Hopkins, D.L.; Mao, Y.; Zhang, Y. Understanding the development of color and color stability of dark cutting beef based on mitochondrial proteomics. Meat Sci. 2020, 163, 108046. [Google Scholar] [CrossRef]
- Ballin, N.Z. Authentication of meat and meat products. Meat Sci. 2010, 86, 577–587. [Google Scholar] [CrossRef]
- Stanciu, S.; Stanciuc, N.; Dumitrascu, L.; Ion, R.; Nistor, C. The effects of horse meat scandal on Romanian meat market. SEA-Pract. Appl. Sci. 2013, 1, 174–181. [Google Scholar]
- Cawthorn, D.M.; Steinman, H.A.; Hoffman, L.C. A high incidence of species substitution and mislabelling detected in meat products sold in South Africa. Food Control 2013, 32, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Bottero, M.T.; Dalmasso, A. Animal species identification in food products: Evolution of biomolecular methods. Vet. J. 2011, 190, 34–38. [Google Scholar] [CrossRef]
- Zhu, H.; Yang, X.; Zhang, C.; Zhu, C.; Tao, G.; Zhao, L.; Tang, S.; Shu, Z.; Cai, J.; Dai, S.; et al. Red and processed meat intake is associated with higher gastric cancer risk: A meta-analysis of epidemiological observational studies. PLoS ONE 2013, 8, e70955. [Google Scholar]
- Barnard, N.; Levin, S.; Trapp, C. Meat consumption as a risk factor for type 2 diabetes. Nutrients 2014, 6, 897–910. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.; Cross, A.J.; Graubard, B.I.; Leitzmann, M.F.; Schatzkin, A. Meat intake and mortality: A prospective study of over half a million people. Arch. Internal Med. 2009, 169, 562–571. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Makino, Y.; Oshita, S.; Liu, S. Assessment of visible near-infrared hyperspectral imaging as a tool for detection of horsemeat adulteration in minced beef. Food Bioprocess Technol. 2015, 8, 1054–1062. [Google Scholar] [CrossRef]
- Ahmed, M.U.; Hasan, Q.; Hossain, M.M.; Saito, M.; Tamiya, E. Meat species identification based on the loop mediated isothermal amplification and electrochemical DNA sensor. Food Control 2010, 21, 599–605. [Google Scholar] [CrossRef]
- Vallejo-Cordoba, B.; González-Córdova, A.F.; Mazorra-Manzano, M.A.; Rodríguez-Ramírez, R. Caillary electrophoresis for the analysis of meat authenticity. J. Sep. Sci. 2005, 28, 826–836. [Google Scholar] [CrossRef]
- ElMasry, G.; Barbin, D.F.; Sun, D.W.; Allen, P. Meat quality evaluation by hyperspectral imaging technique: An overview. Crit. Rev. Food Sci. Nutr. 2012, 52, 689–711. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; ElMasry, G.; Sun, D.W.; Allen, P. Application of NIR hyperspectral imaging for discrimination of lamb muscles. J. Food Eng. 2011, 104, 332–340. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.W.; Pu, H.; Cheng, J.H.; Wei, Q. Advanced techniques for hyperspectral imaging in the food industry: Principles and recent applications. Ann. Rev. Food Sci. Technol. 2019, 10, 197–220. [Google Scholar] [CrossRef]
- Suman, S.P.; Joseph, P. Myoglobin chemistry and meat color. Ann. Rev. Food Sci. Technol. 2013, 4, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Denoyelle, C.; Berny, F. Objective measurement of veal color for classification purposes. Meat Sci. 1999, 53, 203–209. [Google Scholar] [CrossRef]
- Fletcher, D. Broiler breast meat color variation, pH, and texture. Poult. Sci. 1999, 78, 1323–1327. [Google Scholar] [CrossRef]
- Xing, J.; Ngadi, M.; Gunenc, A.; Prasher, S.; Gariepy, C. Use of visible spectroscopy for quality classification of intact pork meat. J. Food Eng. 2007, 82, 135–141. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.R. Analysis of visible reflectance spectra of stored, cooked and diseased chicken meats. Meat Sci. 2001, 58, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Ropodi, A.I.; Panagou, E.Z.; Nychas, G.J.E. Multispectral imaging (MSI): A promising method for the detection of minced beef adulteration with horsemeat. Food Control 2017, 73, 57–63. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, A.; Khan, A.M.; Mazzara, M.; Distefano, S.; Sohaib, A.; Nibouche, O. Spatial prior fuzziness pool-based interactive classification of hyperspectral images. Remote Sens. 2019, 11, 1136. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Shabbir, S.; Oliva, D.; Mazzara, M.; Distefano, S. Spatial-prior Generalized Fuzziness Extreme Learning Machine Autoencoder-based Active Learning for Hyperspectral Image Classification. Optik-Int. J. Light Electron Opt. 2020. [Google Scholar] [CrossRef]
- Ahmad, M.; Raza, R.A.; Mazzara, M. Multiclass Non-Randomized Spectral–Spatial Active Learning for Hyperspectral Image Classification. Appl. Sci. 2020, 10, 4739. [Google Scholar] [CrossRef]
- Fu, X.; Chen, J. A review of hyperspectral imaging for chicken meat safety and quality evaluation: Application, hardware, and software. Compr. Rev. Food Sci. Food Saf. 2019, 18, 535–547. [Google Scholar] [CrossRef] [Green Version]
- Fowler, S.M.; Schmidt, H.; Scheier, R.; Hopkins, D.L. Raman spectroscopy for predicting meat quality traits. In Advanced Technologies for Meat Processing; CRC Press: Cleveland, OH, USA, 2017; pp. 83–112. [Google Scholar]
- Velásquez, L.; Cruz-Tirado, J.; Siche, R.; Quevedo, R. An application based on the decision tree to classify the marbling of beef by hyperspectral imaging. Meat Sci. 2017, 133, 43–50. [Google Scholar] [CrossRef]
- Sanz, J.A.; Fernandes, A.M.; Barrenechea, E.; Silva, S.; Santos, V.; Gonçalves, N.; Paternain, D.; Jurio, A.; Melo-Pinto, P. Lamb muscle discrimination using hyperspectral imaging: Comparison of various machine learning algorithms. J. Food Eng. 2016, 174, 92–100. [Google Scholar] [CrossRef]
- Al-Sarayreh, M.; M Reis, M.; Qi Yan, W.; Klette, R. Detection of red-meat adulteration by deep spectral–spatial features in hyperspectral images. J. Imaging 2018, 4, 63. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.; Ngadi, M.O.; Wang, N.; Gariépy, C.; Prasher, S.O. Pork quality and marbling level assessment using a hyperspectral imaging system. J. Food Eng. 2007, 83, 10–16. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, N.; Ngadi, M.; Gunenc, A.; Monroy, M.; Gariepy, C.; Prasher, S. Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat Sci. 2007, 76, 1–8. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.W.; Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 2012, 110, 127–140. [Google Scholar] [CrossRef]
- Barbon, S.; Costa Barbon, A.P.A.D.; Mantovani, R.G.; Barbin, D.F. Machine Learning Applied to Near-Infrared Spectra for Chicken Meat Classification. J. Spectrosc. 2018, 2018, 12. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.; Wang, W. Feasibility of the detection of carrageenan adulteration in chicken meat using visible/near-infrared (vis/nir) hyperspectral imaging. Appl. Sci. 2019, 9, 3926. [Google Scholar] [CrossRef] [Green Version]
- Rady, A.; Adedeji, A.A. Application of Hyperspectral Imaging and Machine Learning Methods to Detect and Quantify Adulterants in Minced Meats. Food Anal. Methods 2020, 1–12. [Google Scholar] [CrossRef]
- Khan, M.H.; Saleem, Z.; Ahmad, M.; Sohaib, A.; Ayaz, H. Unsupervised adulterated red-chili pepper content transformation for hyperspectral classification. arXiv 2019, arXiv:1911.03711. [Google Scholar]
- Farrand, W.H.; Singer, R.B.; Merényi, E. Retrieval of apparent surface reflectance from AVIRIS data: A comparison of empirical line, radiative transfer, and spectral mixture methods. Remote Sens. Environ. 1994, 47, 311–321. [Google Scholar] [CrossRef]
- Reis, M.M.; Van Beers, R.; Al-Sarayreh, M.; Shorten, P.; Yan, W.Q.; Saeys, W.; Klette, R.; Craigie, C. Chemometrics and hyperspectral imaging applied to assessment of chemical, textural and structural characteristics of meat. Meat Sci. 2018, 144, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Mamani-Linares, L.; Gallo, C.; Alomar, D. Identification of cattle, llama and horse meat by near infrared reflectance or transflectance spectroscopy. Meat Sci. 2012, 90, 378–385. [Google Scholar] [CrossRef]
- Cozzolino, D.; Murray, I. Identification of animal meat muscles by visible and near infrared reflectance spectroscopy. LWT-Food Sci. Technol. 2004, 37, 447–452. [Google Scholar] [CrossRef]
- Su, H.; Du, Q.; Du, P. Hyperspectral image visualization using band selection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 7, 2647–2658. [Google Scholar] [CrossRef]
- Nelson-Wong, E.; Howarth, S.; Winter, D.A.; Callaghan, J.P. Application of autocorrelation and cross-correlation analyses in human movement and rehabilitation research. J. Orthop. Sport. Phys. Ther. 2009, 39, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Yu, H.; Guo, L.; Li, J.; Chu, Y.; Tang, Y.; Tang, S.; Wang, F. Accuracy and stability improvement in detecting Wuchang rice adulteration by piece-wise multiplicative scatter correction in the hyperspectral imaging system. Anal. Methods 2018, 10, 3224–3231. [Google Scholar] [CrossRef]
- Schafer, R.W. What is a Savitzky-Golay filter. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
- Schölkopf, B.; Burges, C.J.; Smola, A.J. Advances in Kernel Methods: Support Vector Learning; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Chen, K.; Sun, X.; Qin, C.; Tang, X. Color grading of beef fat by using computer vision and support vector machine. Comput. Electron. Agric. 2010, 70, 27–32. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, D.W.; Pu, H.; Zhu, Z.; Luo, M. Combination of spectra and texture data of hyperspectral imaging for differentiating between free-range and broiler chicken meats. LWT-Food Sci. Technol. 2015, 60, 649–655. [Google Scholar] [CrossRef]
Species | Beef | Buffalo | Sheep | Goat | Chicken |
---|---|---|---|---|---|
Beef | 100 | ||||
Buffalo | 98.0 | 100 | |||
Sheep | 98.7 | 96.7 | 100 | ||
Goat | 97.4 | 95.4 | 98.7 | 100 | |
Chicken | 72.5 | 71.2 | 72.5 | 71.5 | 100 |
Band # | Band # | Band # | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Bovine | Ovine | Poultry | Bovine | Ovine | Poultry | Bovine | Ovine | Poultry | |||
450 nm | 0.690 | 0.9710 | 0.969 | 505 nm | 0.933 | 0.959 | 0.959 | 607 nm | 0.969 | 0.943 | 0.942 |
452 nm | 0.700 | 0.969 | 0.967 | 508 nm | 0.918 | 0.960 | 0.958 | 609 nm | 0.996 | 0.942 | 0.941 |
455 nm | 0.723 | 0.968 | 0.966 | 510 nm | 0.916 | 0.962 | 0.960 | 612 nm | 0.997 | 0.942 | 0.942 |
458 nm | 0.757 | 0.967 | 0.966 | 513 nm | 0.931 | 0.962 | 0.961 | 615 nm | 0.997 | 0.943 | 0.942 |
460 nm | 0.771 | 0.966 | 0.965 | 516 nm | 0.940 | 0.959 | 0.957 | 617 nm | 0.997 | 0.942 | 0.942 |
463 nm | 0.790 | 0.967 | 0.966 | 518 nm | 0.930 | 0.958 | 0.959 | 620 nm | 0.998 | 0.942 | 0.941 |
465 nm | 0.835 | 0.968 | 0.966 | 521 nm | 0.927 | 0.960 | 0.958 | 623 nm | 0.998 | 0.943 | 0.941 |
468 nm | 0.858 | 0.969 | 0.965 | 524 nm | 0.937 | 0.959 | 0.957 | 626 nm | 0.997 | 0.944 | 0.942 |
471 nm | 0.861 | 0.965 | 0.968 | 526 nm | 0.942 | 0.957 | 0.955 | 628 nm | 0.998 | 0.944 | 0.943 |
473 nm | 0.885 | 0.966 | 0.964 | 529 nm | 0.933 | 0.955 | 0.953 | 631 nm | 0.998 | 0.944 | 0.943 |
476 nm | 0.904 | 0.965 | 0.964 | 532 nm | 0.928 | 0.955 | 0.953 | 634 nm | 0.998 | 0.942 | 0.943 |
479 nm | 0.907 | 0.964 | 0.962 | 534 nm | 0.937 | 0.956 | 0.953 | 636 nm | 0.998 | 0.942 | 0.942 |
481 nm | 0.917 | 0.964 | 0.962 | 537 nm | 0.939 | 0.953 | 0.951 | 639 nm | 0.998 | 0.942 | 0.942 |
484 nm | 0.925 | 0.963 | 0.961 | 540 nm | 0.931 | 0.953 | 0.951 | 642 nm | 0.998 | 0.945 | 0.944 |
487 nm | 0.929 | 0.962 | 0.960 | 542 nm | 0.927 | 0.953 | 0.951 | 644 nm | 0.998 | 0.945 | 0.945 |
489 nm | 0.925 | 0.962 | 0.961 | 545 nm | 0.932 | 0.952 | 0.950 | 647 nm | 0.998 | 0.945 | 0.945 |
492 nm | 0.933 | 0.961 | 0.959 | 548 nm | 0.934 | 0.950 | 0.948 | 650 nm | 0.998 | 0.943 | 0.943 |
495 nm | 0.929 | 0.958 | 0.957 | 550 nm | 0.931 | 0.950 | 0.949 | 652 nm | 0.998 | 0.942 | 0.942 |
497 nm | 0.923 | 0.96 | 0.958 | 553 nm | 0.935 | 0.952 | 0.950 | 655 nm | 0.998 | 0.944 | 0.943 |
500 nm | 0.931 | 0.962 | 0.960 | 556 nm | 0.946 | 0.951 | 0.949 | 658 nm | 0.998 | 0.945 | 0.944 |
558 nm | 0.952 | 0.950 | 0.948 | 661 nm | 0.998 | 0.948 | 0.947 | ||||
561 nm | 0.947 | 0.949 | 0.947 | 663 nm | 0.998 | 0.949 | 0.948 | ||||
564 nm | 0.945 | 0.951 | 0.949 | 666 nm | 0.998 | 0.947 | 0.947 | ||||
566 nm | 0.952 | 0.952 | 0.950 | 669 nm | 0.9990 | 0.945 | 0.945 | ||||
569 nm | 0.959 | 0.951 | 0.948 | 671 nm | 0.9991 | 0.944 | 0.944 | ||||
572 nm | 0.958 | 0.948 | 0.946 | 674 nm | 0.9990 | 0.944 | 0.944 | ||||
677 nm | 0.998 | 0.945 | 0.946 | ||||||||
680 nm | 0.998 | 0.947 | 0.947 | ||||||||
682 nm | 0.9990 | 0.948 | 0.948 | ||||||||
685 nm | 0.9991 | 0.947 | 0.947 | ||||||||
688 nm | 0.9992 | 0.946 | 0.946 | ||||||||
690 nm | 0.9991 | 0.946 | 0.946 | ||||||||
693 nm | 0.9991 | 0.945 | 0.946 | ||||||||
696 nm | 0.9990 | 0.947 | 0.947 |
Class | Ovine | Poultry | Bovine |
---|---|---|---|
Ovine | 0.98 | 0 | 0.02 |
Poultry | 0 | 0.994 | 0.006 |
Bovine | 0.023 | 0 | 0.977 |
Average Accuracy: 98.5 |
Class | Ovine | Poultry | Bovine |
---|---|---|---|
Ovine | 0.768 | 0.002 | 0.23 |
Poultry | 0.001 | 0.997 | 0.002 |
Bovine | 0.18 | 0.01 | 0.810 |
Average Accuracy: 88.8 |
Sample # | Bovine | Poultry | Ovine | ||||||
---|---|---|---|---|---|---|---|---|---|
Class 1 | Class 2 | Class 3 | Class 1 | Class 2 | Class 3 | Class 1 | Class 2 | Class 3 | |
1 | |||||||||
2 | |||||||||
3 | |||||||||
4 | |||||||||
5 | |||||||||
6 | |||||||||
Accuracy |
Feature | Classifier | Optimization | Accuracy |
---|---|---|---|
Reflectance Spectrum + PCA [32] | SMO | rbf; Tolerance=0.001; C=1.0 | 82.01% |
Reflectance Spectrum + PCA [25] | 2-Step SVM | rbf; Tolerance=0.001; C=1.0 | 94.00% |
Reflectance + PCA + GLGCM [51] | SVM | rbf; Tolerance=0.001; C=1.0 | 72.22% |
Proposed Methodology | |||
Spectral Features | SVM | rbf; Tolerance=0.001; C=1.0 | 88.88% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayaz, H.; Ahmad, M.; Sohaib, A.; Yasir, M.N.; Zaidan, M.A.; Ali, M.; Khan, M.H.; Saleem, Z. Myoglobin-Based Classification of Minced Meat Using Hyperspectral Imaging. Appl. Sci. 2020, 10, 6862. https://doi.org/10.3390/app10196862
Ayaz H, Ahmad M, Sohaib A, Yasir MN, Zaidan MA, Ali M, Khan MH, Saleem Z. Myoglobin-Based Classification of Minced Meat Using Hyperspectral Imaging. Applied Sciences. 2020; 10(19):6862. https://doi.org/10.3390/app10196862
Chicago/Turabian StyleAyaz, Hamail, Muhammad Ahmad, Ahmed Sohaib, Muhammad Naveed Yasir, Martha A. Zaidan, Mohsin Ali, Muhammad Hussain Khan, and Zainab Saleem. 2020. "Myoglobin-Based Classification of Minced Meat Using Hyperspectral Imaging" Applied Sciences 10, no. 19: 6862. https://doi.org/10.3390/app10196862
APA StyleAyaz, H., Ahmad, M., Sohaib, A., Yasir, M. N., Zaidan, M. A., Ali, M., Khan, M. H., & Saleem, Z. (2020). Myoglobin-Based Classification of Minced Meat Using Hyperspectral Imaging. Applied Sciences, 10(19), 6862. https://doi.org/10.3390/app10196862