Improved Uncalibrated Visual Servo Strategy for Hyper-Redundant Manipulators in On-Orbit Automatic Assembly
Abstract
:Featured Application
Abstract
1. Introduction
2. Projective Homography
3. Improved Strategy for the Uncalibrated Visual Servo of a Hyper-Redundant Space Manipulator
3.1. Improved Homography-Based Task Function
- Translate the feature points as and to ensure that the centroid of these feature points is at the origin;
- Scale feature points as and to make their average distance from the origin equal to .
- Necessity proof: If and , then . On the basis of the similarity of and , we obtain . From Equation (8), we obtain . The constraint gives ; i.e., , , and .
- Sufficiency: It is obvious that and if . From Equation (7), we have
3.2. Online Estimation of Total Jacobian
- Calculate the a priori state space:
- Calculate the a priori state error covariance matrix:
- Calculate the residuals vector:
- Calculate the smoothing boundary layer :
- Compare the calculated boundary layer with the threshold , which is based on the specific conditions of the system, and switch the appropriate filter gain:If , the KF gain is switched to provide an optimal estimate:If , the SVSF gain is switched to provide a robust estimate:
3.3. Controller Design
- Static positioning controller:
- Dynamic tracking controller:
4. Simulations
4.1. System Description
4.2. Simulations and Discussions of Aligning with Static Assembly Objects
4.3. Simulations and Discussions of Aligning with Dynamic Assembly Objects
5. Experiments
5.1. Evaluation of Real-Time Performance
5.2. Evaluation of System Performance
5.2.1. Static Positioning Experiment
5.2.2. Dynamic Tracking Experiment
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hippler, S. Adaptive Optics for Extremely Large Telescopes. J. Astron. Instrum. 2019, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Stolfi, A.; Angeletti, F.; Gasbarri, P.; Panella, M. A Deep Learning Strategy for On-Orbit Servicing Via Space Robotic Manipulator. Aerotec. Missili Spaz. 2019, 98, 273–282. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, B.; Jia, Q.; Sun, H.; Guo, W. Failure Tolerance Strategy of Space Manipulator for Large Load Carrying Tasks. Acta Astronaut. 2018, 148, 186–204. [Google Scholar] [CrossRef]
- Li, W.-J.; Cheng, D.-Y.; Liu, X.-G.; Wang, Y.-B.; Shi, W.-H.; Tang, Z.-X.; Gao, F.; Zeng, F.-M.; Chai, H.-Y.; Luo, W.-B.; et al. On-Orbit Service (OOS) of Spacecraft: A Review of Engineering Developments. Prog. Aerosp. Sci. 2019, 108, 32–120. [Google Scholar] [CrossRef]
- Flores-Abad, A.; Ma, O.; Pham, K.; Ulrich, S. A Review of Space Robotics Technologies for on-Orbit Servicing. Prog. Aerosp. Sci. 2014, 68, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Liang, B.; Xu, Y. Survey of Modeling, Planning, and Ground Verification of Space Robotic Systems. Acta Astronaut. 2011, 68, 1629–1649. [Google Scholar] [CrossRef]
- Menon, C.; Busolo, S.; Cocuzza, S.; Aboudan, A.; Bulgarelli, A.; Bettanini, C.; Marchesi, M.; Angrilli, F. Issues and Solutions for Testing Free-Flying Robots. Acta Astronaut. 2007, 60, 957–965. [Google Scholar] [CrossRef]
- Stolfi, A.; Gasbarri, P.; Sabatini, M. A Parametric Analysis of a Controlled Deployable Space Manipulator for Capturing a Non-Cooperative Flexible Satellite. Acta Astronaut. 2018, 148, 317–326. [Google Scholar] [CrossRef]
- Chen, H.; Huang, P.; Liu, Z.; Ma, Z. Time Delay Prediction for Space Telerobot System with a Modified Sparse Multivariate Linear Regression Method. Acta Astronaut. 2020, 166, 330–341. [Google Scholar] [CrossRef]
- Larouche, B.P.; Zhu, Z.H. Autonomous Robotic Capture of Non-Cooperative Target Using Visual Servoing and Motion Predictive Control. Auton. Robot. 2014, 37, 157–167. [Google Scholar] [CrossRef]
- Dong, G.; Zhu, Z.H. Predictive Visual Servo Kinematic Control for Autonomous Robotic Capture of Non-Cooperative Space Target. Acta Astronaut. 2018, 151, 173–181. [Google Scholar] [CrossRef]
- Rivolta, A.; Lunghi, P.; Lavagna, M. GNC & Robotics for on Orbit Servicing With Simulated Vision in the Loop. Acta Astronaut. 2019, 162, 327–335. [Google Scholar] [CrossRef]
- Dong, G.; Zhu, Z.H. Position-Based Visual Servo Control of Autonomous Robotic Manipulators. Acta Astronaut. 2015, 115, 291–302. [Google Scholar] [CrossRef]
- Bottin, M.; Cocuzza, S.; Comand, N.; Doria, A. Modeling and Identification of an Industrial Robot with a Selective Modal Approach. Appl. Sci. 2020, 10, 4619. [Google Scholar] [CrossRef]
- Wang, N.; He, H. Adaptive Homography-Based Visual Servo for Micro Unmanned Surface Vehicles. Int. J. Adv. Manuf. Technol. 2019, 105, 4875–4882. [Google Scholar] [CrossRef]
- Assa, A.; Janabi-Sharifi, F. Virtual Visual Servoing for Multicamera Pose Estimation. IEEE/ASME Trans. Mechatron. 2015, 20, 789–798. [Google Scholar] [CrossRef]
- Colombo, F.T.; Fontes, J.V.D.C.; Da Silva, M.M. A Visual Servoing Strategy Under Limited Frame Rates for Planar Parallel Kinematic Machines. J. Intell. Robot. Syst. 2019, 96, 95–107. [Google Scholar] [CrossRef]
- Li, S.; Li, D.; Zhang, C.; Wan, J.; Xie, M. RGB-D Image Processing Algorithm for Target Recognition and Pose Estimation of Visual Servo System. Sensors 2020, 20, 430. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Somani, N.; Nair, S.; Mendoza, D.; Knoll, A. Uncalibrated Stereo Visual Servoing for Manipulators Using Virtual Impedance Control. In Proceedings of the 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore, 10–12 December 2014; pp. 1888–1893. [Google Scholar]
- Liang, X.; Wang, H.; Liu, Y.-H.; Chen, W.; Zhao, J. A Unified Design Method for Adaptive Visual Tracking Control of Robots with Eye-in-Hand/Fixed Camera Configuration. Automatica 2015, 59, 97–105. [Google Scholar] [CrossRef]
- Shademan, A.; Jägersand, M. Three-View Uncalibrated Visual Servoing. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; pp. 6234–6239. [Google Scholar]
- Hao, M.; Sun, Z. A Universal State-Space Approach to Uncalibrated Model-Free Visual Servoing. IEEE/ASME Trans. Mechatron. 2011, 17, 833–846. [Google Scholar] [CrossRef]
- Gong, Z.; Tao, B.; Yang, H.; Yin, Z.; Ding, H. An Uncalibrated Visual Servo Method Based on Projective Homography. IEEE Trans. Autom. Sci. Eng. 2018, 15, 806–817. [Google Scholar] [CrossRef]
- Liu, M.; Pradalier, C.; Esiegwart, R. Visual Homing from Scale with an Uncalibrated Omnidirectional Camera. IEEE Trans. Robot. 2013, 29, 1353–1365. [Google Scholar] [CrossRef]
- Ma, Z.; Su, J. Robust Uncalibrated Visual Servoing Control Based on Disturbance Observer. ISA Trans. 2015, 59, 193–204. [Google Scholar] [CrossRef]
- Gong, Z.; Tao, B.; Qiu, C.; Yin, Z.; Ding, H. Trajectory Planning with Shortest Path for Modified Uncalibrated Visual Servoing Based on Projective Homography. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1076–1083. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Chen, C.L.P.; Zhang, Y. Robust Adaptive Visual Tracking Control for Uncertain Robotic Systems With Unknown Dead-Zone Inputs. J. Frankl. Inst. 2019, 356, 6255–6279. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D. Calibration-Free and Model-Independent Method for High-DOF Image-Based Visual Servoing. J. Control. Theory Appl. 2013, 11, 132–140. [Google Scholar] [CrossRef]
- Musić, J.; Bonković, M.; Cecić, M. Comparison of Uncalibrated Model-Free Visual Servoing Methods for Small-Amplitude Movements: A Simulation Study. Int. J. Adv. Robot. Syst. 2014, 11, 108. [Google Scholar] [CrossRef]
- Shi, H.; Sun, G.; Wang, Y.; Hwang, K.-S. Adaptive Image-Based Visual Servoing with Temporary Loss of the Visual Signal. IEEE Trans. Ind. Inform. 2019, 15, 1956–1965. [Google Scholar] [CrossRef]
- Xiaolin, R.; Hongwen, L.; Yuanchun, L. Online Image Jacobian Identification Using Optimal Adaptive Robust Kalman Filter for Uncalibrated Visual Servoing. In Proceedings of the 2017 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Wuhan, China, 16–18 June 2017; pp. 53–57. [Google Scholar]
- Lv, X.; Huang, X. Fuzzy Adaptive Kalman Filtering based Estimation of Image Jacobian for Uncalibrated Visual Servoing. In Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006; pp. 2167–2172. [Google Scholar]
- Wang, F.; Sun, F.; Zhang, J.; Lin, B.; Li, X. Unscented Particle Filter for Online Total Image Jacobian Matrix Estimation in Robot Visual Servoing. IEEE Access 2019, 7, 92020–92029. [Google Scholar] [CrossRef]
- Zhong, X.; Zhong, X.; Peng, X. Robots Visual Servo Control with Features Constraint Employing Kalman-Neural-Network Filtering Scheme. Neurocomputing 2015, 151, 268–277. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, R.; Zhu, Z. RETRACTED: Uncalibrated Dynamic Visual Servoing via Multivariate Adaptive Regression Splines and Improved Incremental Extreme Learning Machine. ISA Trans. 2019, 92, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Wang, W.; Zhu, M.; Lv, Y.; Huo, Q.; Xu, Z. Research on A Technology of Automatic Assembly Based on Uncalibrated Visual Servo System. In Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018; pp. 872–877. [Google Scholar]
- Piepmeier, J.A.; McMurray, G.V.; Lipkin, H. A Dynamic Quasi-Newton Method for Uncalibrated Visual Servoing. Proc. Int. Conf. Robot. Autom. 2003, 2, 1595–1600. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, L.; Chen, Y. Online Estimation Technique for Jacobian Matrix in Robot Visual Servo Systems. In Proceedings of the 2008 3rd IEEE Conference on Industrial Electronics and Applications, Singapore, 3–5 June 2008; pp. 1270–1275. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press (CUP): New York, NY, USA, 2004. [Google Scholar]
- Huang, Y.; Zhang, Y.; Wu, Z.; Li, N.; Chambers, J. A Novel Adaptive Kalman Filter With Inaccurate Process and Measurement Noise Covariance Matrices. IEEE Trans. Autom. Control 2018, 63, 594–601. [Google Scholar] [CrossRef] [Green Version]
- Mu, Z.; Liu, T.; Xu, W.; Lou, Y.; Liang, B. Dynamic Feedforward Control of Spatial Cable-Driven Hyper-Redundant Manipulators for on-Orbit Servicing. Robots 2018, 37, 18–38. [Google Scholar] [CrossRef]
- Chan, T.F.; Dubey, R. A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators. IEEE Trans. Robot. Autom. 1995, 11, 286–292. [Google Scholar] [CrossRef]
- Cocuzza, S.; Pretto, I.; Debei, S. Least-Squares-Based Reaction Control of Space Manipulators. J. Guid. Control. Dyn. 2012, 35, 976–986. [Google Scholar] [CrossRef]
- Tringali, A.; Cocuzza, S. Globally Optimal Inverse Kinematics Method for a Redundant Robot Manipulator with Linear and Nonlinear Constraints. Robots 2020, 9, 61. [Google Scholar] [CrossRef]
- Colome, A.; Torras, C. Closed-Loop Inverse Kinematics for Redundant Robots: Comparative Assessment and Two Enhancements. IEEE/ASME Trans. Mechatron. 2014, 20, 944–955. [Google Scholar] [CrossRef] [Green Version]
- Gadsden, S.; Habibi, S.R. A New Robust Filtering Strategy for Linear Systems. J. Dyn. Syst. Meas. Control. 2012, 135, 014503. [Google Scholar] [CrossRef]
- Gadsden, S.A.; Habibi, S.; Kirubarajan, T. Kalman and Smooth Variable Structure Filters for Robust Estimation. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1038–1050. [Google Scholar] [CrossRef]
- Goodman, J.M.; Wilkerson, S.A.; Eggleton, C.; Gadsden, S.A. A Multiple Model Adaptive SVSF-KF Estimation Strategy. Signal Process. Sens. Inf. Fusion Target Recognit. XXVIII 2019, 11018, 110181K. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, Z.; Sun, H.-Q.; Su, T.; Li, G. Homography Propagation and Optimization for Wide-Baseline Street Image Interpolation. IEEE Trans. Vis. Comput. Graph. 2016, 23, 2328–2341. [Google Scholar] [CrossRef] [PubMed]
Joint | Joint Limit | ||||
---|---|---|---|---|---|
1 | q1 | 0 | 0 | 0 | ±90° |
2 | q2 | 90° | 165.5 | 0 | ±90° |
3 | q3 | −90° | 165.5 | 0 | ±90° |
4 | q4 | 90° | 165.5 | 0 | ±90° |
5 | q5 | −90° | 165.5 | 0 | ±90° |
6 | q6 | 90° | 165.5 | 0 | ±90° |
7 | q7 | −90° | 165.5 | 0 | ±90° |
8 | q8 | 90° | 165.5 | 0 | ±90° |
9 | q9 | −90° | 165.5 | 0 | ±90° |
Task | Method | Noise Mean | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Pure Translation | IBUVS | 0.425 | 0.014 | 1.121 | 0.823 | 0.032 | 4.541 | 1.225 | 0.067 | 6.346 |
OPHUVS | 0.183 | 0.004 | 0.991 | 0.302 | 0.017 | 2.453 | 0.395 | 0.031 | 3.637 | |
KF | 0.181 | 0.004 | 0.987 | 0.289 | 0.015 | 2.278 | 0.379 | 0.029 | 3.308 | |
KF-SVSF | 0.174 | 0.004 | 0.886 | 0.273 | 0.015 | 2.052 | 0.364 | 0.029 | 3.081 | |
Pure Rotation | IBUVS | 0.341 | 0.023 | 1.427 | 0.537 | 0.045 | 5.253 | 0.873 | 0.069 | 7.641 |
OPHUVS | 0.126 | 0.004 | 0.932 | 0.268 | 0.016 | 2.466 | 0.385 | 0.034 | 3.826 | |
KF | 0.124 | 0.004 | 0.929 | 0.251 | 0.015 | 2.349 | 0.374 | 0.031 | 3.527 | |
KF-SVSF | 0.117 | 0.003 | 0.906 | 0.242 | 0.014 | 2.235 | 0.304 | 0.029 | 3.174 | |
General Motion | IBUVS | 0.374 | 0.029 | 1.435 | 0.911 | 0.049 | 6.213 | 1.352 | 0.072 | 8.214 |
OPHUVS | 0.187 | 0.006 | 0.813 | 0.261 | 0.018 | 2.716 | 0.406 | 0.033 | 3.826 | |
KF | 0.185 | 0.006 | 0.811 | 0.243 | 0.017 | 2.529 | 0.394 | 0.032 | 3.672 | |
KF-SVSF | 0.169 | 0.006 | 0.798 | 0.228 | 0.015 | 2.482 | 0.363 | 0.031 | 3.396 |
Path | Method | Noise Mean | ||
---|---|---|---|---|
MSE | MSE | MSE | ||
Double leaf rose | IBUVS | 4.97 | 8.54 | 11.47 |
OPHUVS | 3.94 | 5.21 | 7.56 | |
IPHUVS with KF | 2.59 | 3.84 | 5.54 | |
IPHUVS with KF-SVSF | 2.37 | 3.56 | 5.31 | |
Triple leaf rose | IBUVS | 5.12 | 8.96 | 11.67 |
OPHUVS | 3.91 | 5.13 | 7.48 | |
IPHUVS with KF | 2.66 | 3.75 | 5.62 | |
IPHUVS with KF-SVSF | 2.43 | 3.47 | 5.39 |
Number of Feature Points | IPHUVS | OPHUVS | ||||
---|---|---|---|---|---|---|
TOC-H | TOC-C | Total | TOC-H | TOC-C | Total | |
4 | 0.5486 | 0.8109 | 1.3595 | 0.5624 | 1.0891 | 1.6515 |
9 | 0.7504 | 0.8109 | 1.5613 | 0.7608 | 1.0892 | 1.85 |
16 | 0.9712 | 0.8109 | 1.7821 | 0.9804 | 1.0892 | 2.0696 |
25 | 1.2942 | 0.8108 | 2.105 | 1.3022 | 1.0891 | 2.3913 |
36 | 1.6472 | 0.8107 | 2.4579 | 1.6591 | 1.0892 | 2.7483 |
49 | 2.2026 | 0.8108 | 3.0134 | 2.2176 | 1.0893 | 3.3069 |
Method | |||
---|---|---|---|
IBUVS | 1.08 | 0.023 | 4.14 |
OPHUVS | 0.96 | 0.012 | 2.81 |
IPHUVS with KF | 0.91 | 0.012 | 2.76 |
IPHUVS with KF-SVSF | 0.72 | 0.011 | 2.59 |
Path | Double Leaf Rose | Triple Leaf Rose | |
---|---|---|---|
Method | |||
IBUVS | 9.43 | 10.19 | |
OPHUVS | 7.32 | 7.74 | |
IPHUVS with KF | 6.28 | 6.61 | |
IPHUVS with KF-SVSF | 5.61 | 5.89 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Zhu, M.; Cao, L.; Li, A.; Wang, W.; Xu, Z. Improved Uncalibrated Visual Servo Strategy for Hyper-Redundant Manipulators in On-Orbit Automatic Assembly. Appl. Sci. 2020, 10, 6968. https://doi.org/10.3390/app10196968
Gu J, Zhu M, Cao L, Li A, Wang W, Xu Z. Improved Uncalibrated Visual Servo Strategy for Hyper-Redundant Manipulators in On-Orbit Automatic Assembly. Applied Sciences. 2020; 10(19):6968. https://doi.org/10.3390/app10196968
Chicago/Turabian StyleGu, Jinlin, Mingchao Zhu, Lihua Cao, Ang Li, Wenrui Wang, and Zhenbang Xu. 2020. "Improved Uncalibrated Visual Servo Strategy for Hyper-Redundant Manipulators in On-Orbit Automatic Assembly" Applied Sciences 10, no. 19: 6968. https://doi.org/10.3390/app10196968
APA StyleGu, J., Zhu, M., Cao, L., Li, A., Wang, W., & Xu, Z. (2020). Improved Uncalibrated Visual Servo Strategy for Hyper-Redundant Manipulators in On-Orbit Automatic Assembly. Applied Sciences, 10(19), 6968. https://doi.org/10.3390/app10196968