Effect of Fluoride on Germination, Early Growth and Antioxidant Enzymes Activity of Three Winter Wheat (Triticum aestivum L.) Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Determination of Biometric Parameters and Germination Index
2.3. Determination of Antioxidant Enzymes
2.4. Data Analysis
3. Results
3.1. Antioxidant Enzyme Activity in Wheat Embryos During Imbibition
3.2. Antioxidant Enzyme Activity in Wheat Roots
3.3. Share of Factors in Formation of Antioxidant Enzyme Activities
3.4. Germination and Root Length
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cai, H.; Dong, Y.; Peng, C.; Li, Y.; Xu, W.; Li, D.; Wan, X. Fluoride-induced responses in the chlorophyll content and the antioxidant system in tea leaves (Camellia sinensis). Fluoride 2017, 50, 59–78. [Google Scholar]
- Vithanage, M.; Bhattacharya, P. Fluoride in the environment: Sources, distribution and defluoridation. Environ. Chem. Lett. 2015, 13, 131–147. [Google Scholar] [CrossRef]
- Cronin, S.J.; Manoharan, V.; Hedley, M.J.; Loganathan, P. Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazed-pasture systems in New Zealand. N. Z. J. Agric. Res. 2000, 43, 295–321. [Google Scholar] [CrossRef]
- Gadi, B.R.; Pooja, V.; Ram, A. Influence of NaF on seed germination, membrane stability and some biochemical content in Vigna seedlings. J. Chem. Biol. Phys. Sci. 2012, 2, 1371–1378. [Google Scholar]
- Petersen, P.E.; Lennon, M.A. Effective use of fluorides for the prevention of dental caries in the 21st century: The WHO approach. Community Dent. Oral Epidemiol. 2004, 32, 319–321. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Fluoride in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2004; pp. 1–5. [Google Scholar]
- Dutkiewicz, T. Forms of human exposure to environmental factors. In Environment and Health; Karski, J.B., Pawlak, J., Eds.; Center for Health Organization and Economics: Warsaw, Poland, 1995; pp. 107–113. (In Polish) [Google Scholar]
- Gautam, R.; Bhardawaj, N. Bioaccumulation of fluoride in different plants parts of Hordeum vulgare (Barley) var. RD-2683 form irrigation water. Fluoride 2010, 43, 57–60. [Google Scholar]
- Fujiwara, T.; O’Hagan, D. Successful fluorine-containing herbicide agrochemicals. J. Fluor. Chem. 2014, 167, 16–29. [Google Scholar] [CrossRef]
- Lushchak, V.I.; Matviishyn, T.M.; Husak, V.V.; Storey, J.M.; Storey, K.B. Pesticide toxicity: A mechanistic approach. EXCLI J. 2018, 17, 1101–1136. [Google Scholar] [PubMed]
- Kumar, T.S.; Dhakaand, K.P.; Singh, A. Effect of fluoride toxicity on the growth and yield of wheat (Triticum aestivum L.). Int. J. Forest. Crop Impr. 2013, 4, 59–62. [Google Scholar]
- Choudhary, S.; Rani, M.; Devika, O.S.; Patra, A.; Singh, R.K.; Prasad, S.K.; Devika. Impact of fluoride on agriculture: A review on it’s sources. toxicity in plants and mitigation strategies. Int. J. Chem. Stud. 2019, 7, 1675–1680. [Google Scholar]
- Lethin, J.; Shakil, S.S.M.; Hassan, S.; Sirijovski, N.; Töpel, M.; Olsson, O.; Aronsson, H. Development and characterization of an EMS-mutagenized wheat population and identification of salt-tolerant wheat lines. BMC Plant. Biol. 2020, 20, 15–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, P.; Yadava, R.K.; . Gollen, B.; Kumar, S.; Verma, R.K.; Yadav, S. Nutritional contents and medicinal properties of wheat: A review. Life Sci. Med. Res. 2011, 22, 1–10. [Google Scholar]
- Giraldo, P.; Barzana, M.E.B.; Manzano-Agugliaro, F.; Giménez, E. Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Filho, J.M. Seed vigor testing: An overview of the past, present and future perspective. Sci. Agric. 2015, 72, 363–374. [Google Scholar] [CrossRef] [Green Version]
- Wolny, E.; Betekhtin, A.; Rojek-Jelonek, M.; Braszewska-Zalewska, A.; Lusinska, J.; Hasterok, R. Germination and the Early Stages of Seedling Development in Brachypodium distachyon. Int. J. Mol. Sci. 2018, 19, 2916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lev, J.; Blahovec, J. Imbibition of wheat seeds: Application of image analysis. Int. Agrophysics 2017, 31, 475–481. [Google Scholar] [CrossRef]
- Rathjen, J.R.; Strounina, E.V.; Mares, D. Water movement into dormant and non-dormant wheat (Triticum aestivum L.) grains. J. Exp. Bot. 2009, 60, 1619–1631. [Google Scholar] [CrossRef] [Green Version]
- Ruttanaruangboworn, A.; Chanprasert, W.; Tobunluepop, P.; Onwimol, D. Effect of seed priming with different concentrations of potassium nitrate on the pattern of seed imbibition and germination of rice (Oryza sativa L.). J. Integr. Agric. 2017, 16, 605–613. [Google Scholar] [CrossRef]
- Hite, D.; Auh, C.; Scandalios, J. Catalase activity and hydrogen peroxide levels are inversely correlated in maize scutella during seed germination. Redox Rep. 1999, 4, 29–34. [Google Scholar] [CrossRef]
- El-Maarouf-Bouteau, H.; Bailly, C. Oxidative signaling in seed germination and dormancy. Plant. Signal. Behav. 2008, 3, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Śnioszek, M.; Telesiński, A.; Smolik, B.; Zakrzewska, H. Effect of Fluoride and Bentonite on Biochemical Aspects of Oxidative Stress in Pisum sativum L. J. Ecol. Eng. 2018, 19, 164–171. [Google Scholar] [CrossRef]
- Cakmak, I.; Strbac, D.; Marschner, H. Activities of Hydrogen Peroxide-Scavenging Enzymes in Germinating Wheat Seeds. J. Exp. Bot. 1993, 44, 127–132. [Google Scholar] [CrossRef]
- Pelc, J.; Smolik, B.; Krupa-Małkiewicz, M. Effect of Sodium Fluoride On Some Morphological And Physiological Parameters Of 10-Day-Old Seedlings Of Various Plant Species. Folia Pomeranae Univ. Technol. Stetin. Agric. Aliment. Piscaria Zootech. 2017, 338, 151–158. [Google Scholar] [CrossRef]
- Barbero, P.; Beltrami, M.; Baudo, R.; Rossi, D. Assessment of Lake Orta sediments phytotoxicity after limiting treatment. J. Limnol. 2001, 60, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Lück, H. Catalase; Elsevier: Amsterdam, The Netherlands, 1965; pp. 885–894. [Google Scholar]
- Chance, B.; Maehly, A. [136] Assay of catalases and peroxidases. Methods Enzym. 1955, 2, 764–775. [Google Scholar] [CrossRef]
- Saleh, A.; Abdel-Kader, D.Z. Metabolic responses of two Helianthus annuus cultivars to different fluoride concentration during germination and seedling growth stager. Egypt J. Biol. 2003, 5, 43–54. [Google Scholar]
- Elloumi, N.; Abdallah, F.B.; Mezghani, I.; Rhouma, A.; Boukhris, M. Effect of fluoride on almond seedlings in culture solution. Fluoride 2005, 38, 193–198. [Google Scholar]
- Gupta, S.; Banerjee, S.; Mondal, S. Phytotoxicity of fluoride in the germination of paddy (Oryza sativa L.) and its effect on the physiology and biochemistry of germinated seedlings. Fluoride 2009, 42, 142–146. [Google Scholar]
- Montagnolli, R.N.; Lopes, P.R.M.; Cruz, J.M.; Claro, E.M.T.; Quiterio, G.M.; Bidoia, E.D. The effects of fluoride based fire-fighting foams on soil microbiota activity and plant growth during natural attenuation of perfluorinated compounds. Environ. Toxicol. Pharmacol. 2017, 50, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Baunthiyal, M.; Ranghar, S. Physiological and biochemical responses of plants under fluoride stress: An overview. Fluoride 2014, 47, 287–293. [Google Scholar]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. New Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Kaur, R. Insights into fluoride-induced oxidative stress and antioxidant defences in plants. Acta Physiol. Plant. 2018, 40, 181. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Farhangi-Abriz, S. Biochar alleviates fluoride toxicity and oxidative stress in safflower (Carthamus tinctorius L.) seedlings. Chemosphere 2019, 223, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Scandalios, J. Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 2005, 38, 995–1014. [Google Scholar] [CrossRef]
- Tak, Y.; Asthir, B. Fluoride-induced changes in the antioxidant defense system in two contrasting cultivars of Triticum aestivum L. Fluoride 2017, 50, 324–333. [Google Scholar]
- Neri, F.; Kok, D.; Miller, M.A.; Smulevich, G. Fluoride Binding in Hemoproteins: The Importance of the Distal Cavity Structure†. Biochemistry 1997, 36, 8947–8953. [Google Scholar] [CrossRef]
- Śnioszek, M.; Telesiński, A.; Biczak, R.; Płatkowski, M.; Pawłowska, B.; Wróbel, J. Comparison of the effects of soil treatment with NaF and KF on antioxidant enzymes in winter wheat (Triticum aestivum L.) seedlings. Fluoride 2019, 52, 199–208. [Google Scholar]
- Mondal, N.K. Effect of fluoride on photosynthesis, growth and accumulation of four widely cultivated rice (Oryza sativa L.) varieties in India. Ecotoxicol. Environ. Saf. 2017, 144, 36–44. [Google Scholar] [CrossRef]
- Rao, A.; Ahmad, S.D.; Sabir, S.M.; Awan, S.I.; Shah, A.H.; Abbas, S.R.; Shafique, S.; Khan, F.; Chaudhary, A. Potential Antioxidant Activities Improve Salt Tolerance in Ten Varieties of Wheat (Triticum aestivum L.). Am. J. Plant. Sci. 2013, 4, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Morohashi, Y. Peroxidase activity develops in the micropylar endosperm of tomato seeds prior to radicle protrusion. J. Exp. Bot. 2002, 53(374), 1643–1650. [Google Scholar] [CrossRef] [Green Version]
- Saini, P.; Khan, S.; Baunthiyal, M.; Sharma, V. Effects of fluoride on germination, early growth and antioxidant enzyme activities of legume plant species Prosopis juliflora. J. Environ. Biol. 2013, 34, 205–209. [Google Scholar] [PubMed]
- Alim, H.; Ahmad, M.A.; Munir, I.; Khan, I.; Mustafa, G.; Ullah, I.; Ahmad, M.N.; Khan, H.; Yasinzai, M.; Zia, A.; et al. The effect of different concentrations of the fluoride ion on the growth and nutritional value of two elite genotypes of Triticum aestivum. Fluoride 2017, 50, 143–150. [Google Scholar]
- Bhargava, D.; Bhardwaj, N. Effect of sodium fluoride on seed germination and seedling growth of Triticum aestivum var. RAJ. 4083. J. Phytol. 2010, 2, 41–43. [Google Scholar]
- Osuna, D.; Prieto, P.; Aguilar, M. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability. Front. Plant. Sci. 2015, 6, 6. [Google Scholar] [CrossRef]
- Baunthiyal, M.; Bhatt, A.; Ranghar, S. Fluorides and its effects on plant metabolism. Int. J. Agric. Technol. 2014, 10, 1–27. [Google Scholar]
- Yadu, B.; Chandrakar, V.; Kreshavkant, S. Responses of plants to fluoride: An overview of oxidative stress and defense mechanisms. Fluoride 2016, 49, 293–302. [Google Scholar]
- Shen, Y.; Li, S.; Shao, M. Effects of Spatial Coupling Of Water And Fertilizer Applications On Root Growth Characteristics And Water Use Of Winter Wheat. J. Plant. Nutr. 2013, 36, 515–528. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Zhang, F.S.; Li, Z.J.; Li, F.C.; Shi, C.Y.; Zhang, J.; Zhang, X.C.; Shen, J.Q.; Pan, H.J.; Zhao, J.M.; et al. The vertical distribution and its change of root quantity and activity of the inter-planted winter wheat. Plant Nutr. Fertil. Sci. 2003, 9, 214–219. [Google Scholar]
- Rout, G.R.; Samantaray, S.; Das, P. Differential chromium tolerance among eight mung bean cultivars grown in nutrient culture. J. Plant Nutr. 1997, 20, 473–483. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.-H. Root Response to Drought Stress in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef] [Green Version]
- Smolik, B.; Pelc, J. Efficacy of the use of biologically active substances to relieve the stress induced by sodium fluoride on the basis of morphological, biochemical and physiological parameters in spring wheat (Triticum aestivum L.) var. Bryza. Agron. Sci. 2017, 62, 27–35. [Google Scholar]
- Sachan, P.; Lal, N. Effect of sodium fluoride on germination, seedling growth and photosynthetic pigments in Cicer arietinum L. and Hordeum vulgare L. MOJ Ecol. Environ. Sci. 2018, 3, 1. [Google Scholar] [CrossRef]
- Singh, J.; Singh, D.; Chauhan, S.V.S. Effect of sodium fluoride on growth and yield in wheat (Triticum aestivum). Ind. J. Agric. Sci. 2001, 71, 41–43. [Google Scholar]
- Ghosh, D.; Xu, J. Abiotic stress responses in plant roots: A proteomics perspective. Front. Plant. Sci. 2014, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NaF Concentration (mmol∙dm−3) | Winter Wheat Cultivar | ||
---|---|---|---|
Delawar | Tobak | Arkadia | |
0 (control) | 145.2 ± 1.5 c | 249.7 ± 3.3 a | 182.7 ± 6.1 b |
2.5 | 118.4 ± 1.5 d | 144.4 ± 10.8 c | 143.9 ± 2.4 c |
5.0 | 116.1 ± 1.2 d | 124.8 ± 1.2 d | 138.7 ± 2.9 c |
8.0 | 58.4 ± 0.9 fg | 89.8 ± 1.8 e | 71.1 ± 4.2 f |
10.0 | 52.5 ± 0.4 g | 32.2 ± 6.8 h | 67.0 ± 3.2 f |
NaF Concentration (mmol∙dm−3) | Winter Wheat Cultivar | ||
---|---|---|---|
Delawar | Tobak | Arkadia | |
0 (control) | 33.9 ± 0.4 j | 52.0 ± 0.72 e | 46.9 ± 0.6 f |
2.5 | 35.2 ± 0.7 ij | 74.2 ± 0.38 b | 47.6 ± 1.2 f |
5.0 | 43.5 ± 0.5 g | 82.3 ± 0.66 a | 57.6 ± 0.7 d |
8.0 | 31.0 ± 0.2 k | 40.7 ± 1.19 h | 60.8 ± 0.5 c |
10.0 | 19.3 ± 0.8 l | 36.7 ± 1.71 i | 53.4 ± 1.4 e |
NaF Concentration (mmol∙dm−3) | Winter Wheat Cultivar | ||
---|---|---|---|
Delawar | Tobak | Arkadia | |
0 (control) | 268.1 ± 14.6 a | 114.3 ± 11.7 ef | 163.5 ± 1.6 c |
2.5 | 182.7 ± 5.5 b | 154.2 ± 1.5 cd | 124.8 ± 3.6 e |
5.0 | 143.6 ± 2.9 d | 144.0 ± 2.6 d | 102.6 ± 1.0 fg |
8.0 | 58.4 ± 0.9 h | 38.9 ± 6.0 i | 95.9 ± 6.8 g |
10.0 | 27.3 ± 3.7 i | 7.2 ± 3.3 j | 63.3 ± 1.2 h |
NaF Concentration (mmol∙dm−3) | Winter Wheat Cultivar | ||
---|---|---|---|
Delawar | Tobak | Arkadia | |
0 (control) | 41.9 ± 4.7 fg | 36.7 ± 1.4 gh | 38.8 ± 1.9 fgh |
2.5 | 44.2 ± 1.2 fg | 30.4 ± 0.8 h | 54.9 ± 1.6 de |
5.0 | 47.5 ± 2.2 ef | 41.2 ± 2.9 fg | 58.7 ± 2.1 cd |
8.0 | 57.1 ± 2.7 cd | 45.1 ± 0.7 fg | 65.2 ± 3.1 bc |
10.0 | 67.8 ± 5.3 b | 86.5 ± 2.8 a | 70.5 ± 5.3 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pelc, J.; Śnioszek, M.; Wróbel, J.; Telesiński, A. Effect of Fluoride on Germination, Early Growth and Antioxidant Enzymes Activity of Three Winter Wheat (Triticum aestivum L.) Cultivars. Appl. Sci. 2020, 10, 6971. https://doi.org/10.3390/app10196971
Pelc J, Śnioszek M, Wróbel J, Telesiński A. Effect of Fluoride on Germination, Early Growth and Antioxidant Enzymes Activity of Three Winter Wheat (Triticum aestivum L.) Cultivars. Applied Sciences. 2020; 10(19):6971. https://doi.org/10.3390/app10196971
Chicago/Turabian StylePelc, Justyna, Martyna Śnioszek, Jacek Wróbel, and Arkadiusz Telesiński. 2020. "Effect of Fluoride on Germination, Early Growth and Antioxidant Enzymes Activity of Three Winter Wheat (Triticum aestivum L.) Cultivars" Applied Sciences 10, no. 19: 6971. https://doi.org/10.3390/app10196971
APA StylePelc, J., Śnioszek, M., Wróbel, J., & Telesiński, A. (2020). Effect of Fluoride on Germination, Early Growth and Antioxidant Enzymes Activity of Three Winter Wheat (Triticum aestivum L.) Cultivars. Applied Sciences, 10(19), 6971. https://doi.org/10.3390/app10196971