Variability of Physical and Chemical Properties of TLUD Stove Derived Biochars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Source Materials
2.2. Biochar Preparation
2.3. Biochar Physicochemical Analysis
2.3.1. Scanning Electron Microscope (SEM)
2.3.2. Brunauer–Emmett–Teller (BET) and Skeletal Density Analysis
2.3.3. Hydrophobicity
2.3.4. Proximate Analysis
2.3.5. Elemental Analysis
2.3.6. pH and Electrical Conductivity
2.3.7. Liming or Neutralizing Capacity
2.3.8. Cation and Anion Exchange Capacity
2.4. TPS Compost Analyses
2.4.1. Chemical Analyses of Composted Fecal Waste
2.4.2. Available Water Content (AWC)
2.5. Statistical Analysis
3. Results and Discussion
3.1. Biochar Production Process
3.2. Physical Properties of the Biochars
3.3. Chemical Properties of the Biochars
3.4. Use of Biochars Mixed with Compost
Total Nutrient Content of the TPS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.; Lima, I.M.; Lamb, M.C.; Mcaloon, A.J.; et al. Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. J. Environ. Qual. 2012, 41, 973–989. [Google Scholar] [CrossRef] [PubMed]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Gezahegn, S.; Sain, M.; Thomas, S. Variation in Feedstock Wood Chemistry Strongly Influences Biochar Liming Potential. Soil Syst. 2019, 3, 26. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Barreto, V.; Li, R.; Chen, G.; Hsieh, Y.P. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2018, 133, 136–146. [Google Scholar] [CrossRef]
- Lu, H.; Li, Z.A.; Fu, S.; Gascó, G.; Paz-Ferreiro, J. Effect of Biochar in Cadmium Availability and Soil Biological Activity in an Anthrosol Following Acid Rain Deposition and Aging Effect of Biochar in Cadmium Availability and Soil Biological Activity in an Anthrosol Following Acid Rain Deposition and Aging. Water Air Soil Pollut. 2015, 226, 164. [Google Scholar] [CrossRef]
- Liang, C.; Gascó, G.; Fu, S.; Méndez, A.; Paz-ferreiro, J. Biochar from pruning residues as a soil amendment: Effects of pyrolysis temperature and particle size. Soil Tillage Res. 2016, 164, 3–10. [Google Scholar] [CrossRef]
- Zhao, B.; Connor, D.O.; Zhang, J.; Peng, T.; Shen, Z.; Daniel, C.W.; Deyi Hou, T. Effect of pyrolysis temperature, heating rate, and residence time on rapessed steam derived biochar. J. Clean. Prod. 2017, 174, 977–987. [Google Scholar] [CrossRef]
- Glaser, B. Potential and constraints of Terra preta products for soil amelioration and climate change mitigation. In Terra Preta Sanitation; Bettendorf, T., Wendland, C., Otterpohl, R., Eds.; Deutsche Bundesstiftung Umwelt: Osnabrück, Germany, 2014; ISBN 978-3-00-046586-4. [Google Scholar]
- Factura, H.; Bettendorf, T.; Buzie, C.; Pieplow, H.; Reckin, J.; Otterpohl, R. Terra Preta Sanitation: Re-discovered from an ancient Amazonian civilisation—Integrating sanitation, bio-waste management and agriculture. Water Sci. Technol. 2010, 61, 2673–2679. [Google Scholar] [CrossRef] [Green Version]
- Krause, A.; Nehls, T.; George, E.; Kaupenjohann, M. Organic wastes from bioenergy and ecological sanitation as soil fertility improver: A field experiment in a tropical Andosol. Soil 2015, 2, 1221–1261. [Google Scholar]
- Anderson, C.; Malambo, D.H.; Perez, M.E.G.; Nobela, H.N.; de Pooter, L.; Spit, J.; Hooijmans, C.M.; van de Vossenberg, J.; Greya, W.; Thole, B.; et al. Lactic acid fermentation, urea and lime addition: Promising faecal sludge sanitizing methods for emergency sanitation. Int. J. Environ. Res. Public Health 2015, 12, 13871–13885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehmann, J.; Stephen, J. Biochar for Environmental Management; Routledge: London, UK; Sterling, VA, USA, 2009; ISBN 9781849770552. [Google Scholar]
- Tang, J.; Zhu, W.; Kookana, R.; Katayama, A. Characteristics of biochar and its application in remediation of contaminated soil. J. Biosci. Bioeng. 2013, 116, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Glaser, B.; Balashov, E.; Haumaier, L.; Guggenberger, G.; Zech, W. Anthropogenic Dark Earths as Carbon Stores and Sinks. Black Carbon Density Fractions Anthr. Soils Braz. Amaz. Reg. 2000, 31, 669–678. [Google Scholar]
- Lawrinenko, M. Anion exchange capacity of biochar. Green Chem. 2014, 17, 4628–4636. [Google Scholar] [CrossRef] [Green Version]
- Liang, B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; O’Neill, B.; Skjemstad, J.O.; Thies, J.; Luizão, F.J.; Petersen, J.; et al. Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 2006, 70, 1719–1730. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Lin, S.; Liu, T.; Cao, C.; Li, C. Effects of Conservation Tillage on Topsoil Microbial Metabolic Characteristics and Organic Carbon within Aggregates under a Rice (Oryza sativa L.)—Wheat (Triticum aestivum L.) Cropping System in Central. PLoS ONE 2016, 11, e0146145. [Google Scholar] [CrossRef] [Green Version]
- Brewer, C.E.; Chuang, V.J.; Masiello, C.A.; Gonnermann, H.; Gao, X.; Dugan, B.; Driver, L.E.; Panzacchi, P.; Zygourakis, K.; Davies, C.A. New approaches to measuring biochar density and porosity. Biomass Bioenergy 2014, 66, 176–185. [Google Scholar] [CrossRef]
- Wildman, J.; Derbyshire, F. Origins and functions of macroporosity in activated carbons from coal and wood precursors. Fuel 1991, 70, 655–661. [Google Scholar] [CrossRef]
- Verheijen, F.; Jeffery, S.; Bastos, A.C.; van der Velde, M.; Diafas, I. Biochar Application to Soils A Critical Scientific Review of Effects on Soil Properties, Processes and Functions; European Commission: Luxembourg, 2010; p. 149. [Google Scholar]
- Lu, H.; Li, Z.; Fu, S.; Méndez, A.; Gascó, G.; Paz-Ferreiro, J. Can Biochar and Phytoextractors Be Jointly Used for Cadmium Remediation? PLoS ONE 2014, 9, e95218. [Google Scholar] [CrossRef]
- Yargicoglu, E.N.; Sadasivam, B.Y.; Reddy, K.R.; Spokas, K. Physical and chemical characterization of waste wood derived biochars. Waste Manag. 2015, 36, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Uchimiya, M.; Chang, S.C.; Klasson, K.T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard. Mater. 2011, 190, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Odey, E.A.; Li, Z.; Zhou, X.; Yan, Y. Optimization of lactic acid fermentation for pathogen inactivation in fecal sludge. Ecotoxicol. Environ. Saf. 2018, 157, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Alozie, N.; Heaney, N.; Lin, C. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids. Sci. Total Environ. 2018, 630, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Hale, S.E.; Alling, V.; Martinsen, V.; Mulder, J.; Breedveld, G.D.; Cornelissen, G. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars. Chemosphere 2013, 91, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, H.; Shields, F.; Jagiello, J.; Thiele, G. Analytical options for biochar adsorption and surface area. In Proceedings of the North American Biochar Conference, Sonoma, CA, USA, 29 July–1 August 2012; pp. 1–19. [Google Scholar]
- Jegajeevagan, K.; Mabilde, L.; Gebremikael, M.T.; Ameloot, N.; De Neve, S.; Leinweber, P.; Sleutel, S. Artisanal and controlled pyrolysis-based biochars differ in biochemical composition, thermal recalcitrance, and biodegradability in soil. Biomass Bioenergy 2016, 84, 1–11. [Google Scholar] [CrossRef]
- Brewer, C.E. Biochar Characterization and Engineering. Master’s Thesis, Iowa State University, Ames, Iowa, 2012; p. 12284. [Google Scholar]
- Montoya-Arango, J.A.; Jimenez-Arias, E. Determinacion de la curva de secado al aire libre, mediante modelacion matemática y experimental de la. Sientia Tech. 2006, 415–419. [Google Scholar] [CrossRef]
- Morales-Pinzón, T.; Durán, L.F.; Alzate, C.A. Contenido de Humedad en Guadua Rolliza Preservada y Secada en Invernadero; CATIE: Turrialba, Costa Rica, 2012. [Google Scholar]
- Bachmann, J.; Horton, R.; Van Der Ploeg, R.R.; Woche, S. Modified sessile drop method for assessing initial soil-water contact angle of sandy soil. Soil Sci. Soc. Am. J. 2000, 64, 564–567. [Google Scholar] [CrossRef]
- Nsamba, H.K.; Hale, S.E.; Cornelissen, G.; Bachmann, R.T. Sustainable Technologies for Small-Scale Biochar Production—A Review. J. Sustain. Bioenergy Syst. 2015, 5, 10–31. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.-P.; Richards, G.N. Influence of metal ions on volatile of pyrolysis of wood products. J. Anal. Appl. Pyrolysis 1989, 16, 117–126. [Google Scholar] [CrossRef]
- Mašek, O.; Buss, W.; Brownsort, P.; Rovere, M.; Alberto, T. Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Sci. Rep. 2019, 9, 5514. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.H.; Deng, L.; Bennadji, H.; Fisher, E.M. Pyrolysis of Potassium-Doped Wood at the Centimeter and Submillimeter Scales. Energy Fuels 2015, 29, 7350–7357. [Google Scholar] [CrossRef]
- Fryda, L.; Daza, C.; Pels, J.; Janssen, A.; Zwart, R. Lab-scale co-firing of virgin and torrefied bamboo species Guadua angustifolia Kunth as a fuel substitute in coal fired power plants. Biomass Bioenergy 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Ardila, C.R.; Folgueras, M.B.; Fernández, F.J. Oxidative pyrolysis of Guadua angustifolia Kunth. Energy Rep. 2019, 22–25. [Google Scholar] [CrossRef]
- Folgeras, M.B.; Fernández, F.J.; Ardila, C.R.; Alonso, M.; Lage, S. Fast pyrolisis of Guadua angustifolia-Kunth. Energy Procedia 2017, 136, 60–65. [Google Scholar] [CrossRef]
- González, P.G.; Pliego-Cuervo, Y.B. Physicochemical and microtextural characterization of activated carbons produced from water steam activation of three bamboo species. J. Anal. Appl. Pyrolysis 2013, 99, 32–39. [Google Scholar] [CrossRef]
- Salas-Enríquez, B.G.; Torres-Huerta, A.M.; Conde-Barajas, E.; Domínguez-Crespo, M.A.; Días-García, L.; Negrete-Rodríguez, M.X. Activated carbon production from the Guadua amplexifolia using a combination of physical and chemical activation. J. Therm. Anal. Calorim. 2016, 124, 1383–1398. [Google Scholar] [CrossRef]
- Sadiku, N.A.; Oluyege, A.O.; Sadiku, I.B. Lignocellulose. Lignocellylose 2016, 5, 34–49. [Google Scholar]
- Scurlock, J.M.O.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Folgeras, M.B.; Fernández, F.J.; Ardila, C.R.; Alonso, M.; Lage, S. Fast pyrolysis of Guadua angustifolia-Kunth. In Proceedings of the 4th International Conference on Energy and Environment Research, ICEER 2017, Porto, Portugal, 17–20 July 2017. ScienceDirect 2017. [Google Scholar]
- Antal, M.J.; Allen, S.G.; Dai, X.; Shimizu, B.; Tam, M.S.; Grønli, M. Attainment of the Theoretical Yield of Carbon from Biomass. Ind. Eng. Chem. Res. 2000, 39, 4024–4031. [Google Scholar] [CrossRef]
- Darmawan, S.; Wistara, N.J.; Pari, G.; Maddu, A.; Syafii, W. Characterization of Lignocellulosic Biomass as Raw Material for the Production of Porous Carbon-based. BioResources 2016, 11, 3561–3574. [Google Scholar] [CrossRef]
- Puente-Urbina, A.; Gaitán-Álvadez, J.; Rodríguez-Zúñiga, A. Torrefaction analysis of woody biomasses from fast-growing plantations of costa rica. In Proceedings of the 25th European Biomass Conference and Exhibition, Stockholm, Sweden, 12–15 June 2017; pp. 12–15. [Google Scholar]
- Bachmann, J.; Ellies, A.; Hartge, K.H. Development and application of a new sessile drop contact angle method to assess soil water repellency. J. Hydrol. 2000, 231, 66–75. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Das, O.; Sarmah, A.K. The love-hate relationship of pyrolysis biochar and water: A perspective. Sci. Total Environ. 2015, 512–513, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [Green Version]
- Suguihiro, T.M.; de Oliveira, P.R.; de Rezende, E.I.P.; Mangrich, A.S.; Marcolino Junior, L.H.; Bergamini, M.F. An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for Lead and Cadmium determination. Bioresour. Technol. 2013, 143, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Baldock, J.A.; Smernik, R.J. Chemical composition and bioavailability of thermally altered Pinus resinosa (Red pine) wood. Org. Geochem. 2002, 33, 1093–1109. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Munera-Echeverri, J.L.; Martinsen, V.; Strand, L.T.; Zivanovic, V.; Cornelissen, G.; Mulder, J. Cation exchange capacity of biochar: An urgent method modification. Sci. Total Environ. 2018, 642, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W.; Kidder, M.; Evans, B.R.; Paik, S.; Buchanan, A.C.; Garten, C.T.; Brown, R.C. Characterization of biochars produced from cornstovers for soil amendment. Environ. Sci. Technol. 2010, 44, 7970–7974. [Google Scholar] [CrossRef] [Green Version]
- Hanč, A.; Tlustoš, P.; Száková, J.; Balík, J. The influence of organic fertilizers application on phosphorus and potassium bioavailability. Plant Soil Environ. 2008, 54, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Bettendorf, T.; Stoeckl, M.; Otterpohl, R. Vermicomposting of municipal solid organic waste and fecal matter as part of Terra Preta Sanitation a process and product assessment. In Terra Preta Sanitation; Wendland, C., Otterpohl, R., Eds.; Deutsche Bundesstiftung Umwelt: Osnabrück, Germany, 2014; pp. 1–8. ISBN 9783000465864. [Google Scholar]
- FAO. Manual on Fertilizer Statistics Food and Agriculture Organization of the United Nations Rome; FAO: Roma, Italy, 1991; ISBN 925103074X. [Google Scholar]
- Naiji, M.; Souri, M.K. Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Sci. Pol. Hortorum Cultus 2018, 17, 167–175. [Google Scholar] [CrossRef]
- Baronti, S.; Vaccari, F.P.; Miglietta, F.; Calzolari, C.; Lugato, E.; Orlandini, S.; Pini, R.; Zulian, C.; Genesio, L. Impact of biochar application on plant water relations in Vitis vinifera (L.). Eur. J. Agron. 2014, 53, 38–44. [Google Scholar] [CrossRef]
Feedstock | Cellulose % | Hemicellulose % | Lignin % | Moisture % | Volatiles % | Ash % | hhv (mj/kg) | Cite |
---|---|---|---|---|---|---|---|---|
Guadua angustifolia Kunth | n.a. | n.a. | n.a. | 9 | 75 | 5.7 | 18.8 | [39] |
52.6 | 19.7 | 27.6 | n.a | n.a | n.a | n.a | [40] | |
n.a. | n.a. | n.a. | 7.8 | 75.8 | 3.8 | 19.1 | [41] | |
n.a. | n.a. | n.a. | 9.1 | 74.1 | 2.9 | n.a. | [42] | |
Guadua amplexifolia | 47.8 | 26.3 | 21.5 | 8.1 | 86.8 | 2.2 | [43] | |
Bambusa vulgaris | n.a | n.a | n.a | 7.14 | 74.35 | 1.49 | n.a | [44] |
Phyllosctachys | 44.2–47.7 | 26.7–28.6 | 25.4–27.3 | n.a. | 80–84 | 0.50–1.3 | 19.1–19.6 | [45] |
Dendrocalamus giganteus Munro | 47.5 | 15.35 | 26.25 | 9.37 | 70.31 | 2.57 | n.a. | [46] |
Pine wood | 42.1 | 27.7 | 25.0 | n.a. | n.a. | n.a. | n.a. | [47] |
Pine wood | 43.74 | 16.20 | 29.14 | n.a | 84.05 | .31 | n.a. | [48] |
Cupressus lusitanica | 64.7 | Under cellulose | 31.4 | n.a. | n.a. | 0.18 | n.a. | [49] |
Spruce wood | 41.1 | 20.9 | 28.0 | n.a. | n.a. | 0.30 | 19.25 | [47] |
BB1 | BB2 | BB3 | WB1 | WB2 | WB3 | p-Value | ||
---|---|---|---|---|---|---|---|---|
Temperature (°C) | ||||||||
Thermocouple I (13 cm) | Average | 335 | 534 | 519 | 558 | 546 | 654 | 0.1643 |
Maximum | 782 | 752 | 756 | 685 | 836 | 854 | 0.6300 | |
Thermocouple II (18 cm) | Average | 258 | 439 | 417 | 554 | 549 | 547 | 0.0351 * |
Maximum | 662 | 694 | 726 | 683 | 767 | 718 | 0.4015 | |
Time to reach 500 °C (min) | ||||||||
Thermocouple I (13 cm) | 36 | 7 | 14 | 3 | 17 | 7 | 0.6193 | |
Thermocouple II (18 cm) | 42 | 7 | 14 | 3 | 12 | 7 | 0.4782 |
Specific Surface Area | Pore Volume | Mean Pore Size | Skeletal Density | |||
---|---|---|---|---|---|---|
Sample | A-BET (m2/g) | Micropore (m2/g) | BJH (cm3/g) | Micropores (cm3/g) | Dp,BJH-D (nm) | (g/cm3) |
BB1 | 144 ± 7 | 108 ± 5 | 0.009 | 0.050 | 4.4 | 1.764 ± 0.010 |
BB2 | 81 ± 4 | 50 ± 2 | 0.007 | 0.023 | 4.8 | 1.690 ± 0.013 |
BB3 | 54 ± 3 | 31 ± 2 | 0.005 | 0.014 | 3.4 | 1.656 ± 0.013 |
WB1 | 267 ± 13 | 159 ± 8 | 0.021 | 0.074 | 4.0 | 1.591 ± 0.013 |
WB2 | 264 ± 13 | 199 ± 10 | 0.024 | 0.092 | 4.0 | 1.609 ± 0.015 |
WB3 | 234 ± 12 | 169 ± 8 | 0.027 | 0.078 | 4.9 | 1.537 ± 0.012 |
BB1 | BB2 | BB3 | WB1 | WB2 | WB3 | |
---|---|---|---|---|---|---|
Proximate analysis | ||||||
Fixed carbon % | 58.6 | 58.1 | 42.1 | 73.4 | 80.7 | 64.8 |
Ash content % | 20.0 | 17.4 | 36.1 | 9.4 | 1.7 | 15.4 |
Elemental analysis | ||||||
C % | 66.7 bc | 61.5 b | 38.3 a | 74.5 cd | 75.1 cd | 75.8 d |
N % | 0.45 a | 0.51 a | 0.61 a | 0.20 a | 0.22 a | 0.20 a |
H % | 2.1 b | 2.2 bc | 1.6 a | 2.2 cd | 2.3 d | 2.6 e |
S % | 0.15 a | 0.23 a | 0.25 a | 0.09 a | 0.11 a | 0.17 a |
O * % | 10.6 ab | 18.1 bcd | 23.2 d | 13.6 abc | 20.6 cd | 5.8 a |
C:N molar | 177 a | 148 a | 97 a | 434 b | 402 b | 454 b |
H:C molar | 0.37 a | 0.42 a | 0.39 a | 0.35 a | 0.36 a | 0.40 a |
O:C molar | 0.12 ab | 0.22 b | 0.45 c | 0.14 ab | 0.21 b | 0.06 a |
BB1 | BB2 | BB3 | WB1 | WB2 | WB3 | |
---|---|---|---|---|---|---|
EC (mS cm−1) | 2.5 ab | 2.5 a | 2.4 b | 0.9 c | 1.0 d | 1.2 e |
RLE | 5.0 a | 0.6 a | 1.9 a | 11.5 b | 9.6 b | 10.9 b |
PLC | 1.0 a | 0.1 a | 0.4 a | 2.4 b | 2.0 b | 2.3 b |
pH H2O | 7.6 a | 10.0 b | 10.3 bc | 9.8 b | 7.3 a | 10.6 c |
pH KCl | 10.1 ab | 9.8 a | 10.1 ab | 10.4 b | 10.4 b | 11.3 c |
pH CaCl2 | 8.0 a | 9.8 b | 10.2 d | 8.8 c | 8.7 c | 10.5 d |
Analysis | Results |
---|---|
Moisture % | 67 |
pH H2O (1:2) | 6.7 |
EC (mS/cm) | 8.10 |
C:N | 12.50 |
C % | 45.23 |
N % | 3.61 |
P % | 0.48 |
K % | 1.37 |
S % | 0.36 |
Ca % | 0.89 |
Mg % | 0.36 |
Fe (mg/kg) | 1631 |
Cu (mg/kg) | 34 |
Zn (mg/kg) | 122 |
Mn (mg/kg) | 159 |
B (mg/kg) | 14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masís-Meléndez, F.; Segura-Chavarría, D.; García-González, C.A.; Quesada-Kimsey, J.; Villagra-Mendoza, K. Variability of Physical and Chemical Properties of TLUD Stove Derived Biochars. Appl. Sci. 2020, 10, 507. https://doi.org/10.3390/app10020507
Masís-Meléndez F, Segura-Chavarría D, García-González CA, Quesada-Kimsey J, Villagra-Mendoza K. Variability of Physical and Chemical Properties of TLUD Stove Derived Biochars. Applied Sciences. 2020; 10(2):507. https://doi.org/10.3390/app10020507
Chicago/Turabian StyleMasís-Meléndez, Federico, Diana Segura-Chavarría, Carlos A García-González, Jaime Quesada-Kimsey, and Karolina Villagra-Mendoza. 2020. "Variability of Physical and Chemical Properties of TLUD Stove Derived Biochars" Applied Sciences 10, no. 2: 507. https://doi.org/10.3390/app10020507
APA StyleMasís-Meléndez, F., Segura-Chavarría, D., García-González, C. A., Quesada-Kimsey, J., & Villagra-Mendoza, K. (2020). Variability of Physical and Chemical Properties of TLUD Stove Derived Biochars. Applied Sciences, 10(2), 507. https://doi.org/10.3390/app10020507